This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | harmoniclbnd | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ≤ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relogcl | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | rprege0 | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) | |
| 3 | flge0nn0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ⌊ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐴 ∈ ℝ+ → ( ⌊ ‘ 𝐴 ) ∈ ℕ0 ) |
| 5 | nn0p1nn | ⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℕ0 → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℕ ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐴 ∈ ℝ+ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℕ ) |
| 7 | 6 | nnrpd | ⊢ ( 𝐴 ∈ ℝ+ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ+ ) |
| 8 | relogcl | ⊢ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ+ → ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ∈ ℝ ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ∈ ℝ ) |
| 10 | fzfid | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) | |
| 11 | elfznn | ⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑚 ∈ ℕ ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑚 ∈ ℕ ) |
| 13 | 12 | nnrecred | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑚 ) ∈ ℝ ) |
| 14 | 10 13 | fsumrecl | ⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ∈ ℝ ) |
| 15 | rpre | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) | |
| 16 | fllep1 | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) | |
| 17 | 15 16 | syl | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
| 18 | id | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ+ ) | |
| 19 | 18 7 | logled | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ↔ ( log ‘ 𝐴 ) ≤ ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
| 20 | 17 19 | mpbid | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ≤ ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
| 21 | harmonicbnd3 | ⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℕ0 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ( 0 [,] γ ) ) | |
| 22 | 4 21 | syl | ⊢ ( 𝐴 ∈ ℝ+ → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ( 0 [,] γ ) ) |
| 23 | 0re | ⊢ 0 ∈ ℝ | |
| 24 | emre | ⊢ γ ∈ ℝ | |
| 25 | 23 24 | elicc2i | ⊢ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ( 0 [,] γ ) ↔ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ℝ ∧ 0 ≤ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∧ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ≤ γ ) ) |
| 26 | 25 | simp2bi | ⊢ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ( 0 [,] γ ) → 0 ≤ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
| 27 | 22 26 | syl | ⊢ ( 𝐴 ∈ ℝ+ → 0 ≤ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
| 28 | 14 9 | subge0d | ⊢ ( 𝐴 ∈ ℝ+ → ( 0 ≤ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ↔ ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ≤ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ) ) |
| 29 | 27 28 | mpbid | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ≤ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ) |
| 30 | 1 9 14 20 29 | letrd | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ≤ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ) |