This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fprod2d - induction step. (Contributed by Scott Fenton, 30-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprod2d.1 | ⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → 𝐷 = 𝐶 ) | |
| fprod2d.2 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fprod2d.3 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ Fin ) | ||
| fprod2d.4 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ℂ ) | ||
| fprod2d.5 | ⊢ ( 𝜑 → ¬ 𝑦 ∈ 𝑥 ) | ||
| fprod2d.6 | ⊢ ( 𝜑 → ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) | ||
| fprod2d.7 | ⊢ ( 𝜓 ↔ ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) | ||
| Assertion | fprod2dlem | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprod2d.1 | ⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → 𝐷 = 𝐶 ) | |
| 2 | fprod2d.2 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 3 | fprod2d.3 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ Fin ) | |
| 4 | fprod2d.4 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ℂ ) | |
| 5 | fprod2d.5 | ⊢ ( 𝜑 → ¬ 𝑦 ∈ 𝑥 ) | |
| 6 | fprod2d.6 | ⊢ ( 𝜑 → ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) | |
| 7 | fprod2d.7 | ⊢ ( 𝜓 ↔ ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) | |
| 8 | simpr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜓 ) | |
| 9 | 8 7 | sylib | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) |
| 10 | nfcv | ⊢ Ⅎ 𝑚 ∏ 𝑘 ∈ 𝐵 𝐶 | |
| 11 | nfcsb1v | ⊢ Ⅎ 𝑗 ⦋ 𝑚 / 𝑗 ⦌ 𝐵 | |
| 12 | nfcsb1v | ⊢ Ⅎ 𝑗 ⦋ 𝑚 / 𝑗 ⦌ 𝐶 | |
| 13 | 11 12 | nfcprod | ⊢ Ⅎ 𝑗 ∏ 𝑘 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑗 ⦌ 𝐶 |
| 14 | csbeq1a | ⊢ ( 𝑗 = 𝑚 → 𝐵 = ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) | |
| 15 | csbeq1a | ⊢ ( 𝑗 = 𝑚 → 𝐶 = ⦋ 𝑚 / 𝑗 ⦌ 𝐶 ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝑗 = 𝑚 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 = ⦋ 𝑚 / 𝑗 ⦌ 𝐶 ) |
| 17 | 14 16 | prodeq12dv | ⊢ ( 𝑗 = 𝑚 → ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑘 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑗 ⦌ 𝐶 ) |
| 18 | 10 13 17 | cbvprodi | ⊢ ∏ 𝑗 ∈ { 𝑦 } ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑚 ∈ { 𝑦 } ∏ 𝑘 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑗 ⦌ 𝐶 |
| 19 | 6 | unssbd | ⊢ ( 𝜑 → { 𝑦 } ⊆ 𝐴 ) |
| 20 | vex | ⊢ 𝑦 ∈ V | |
| 21 | 20 | snss | ⊢ ( 𝑦 ∈ 𝐴 ↔ { 𝑦 } ⊆ 𝐴 ) |
| 22 | 19 21 | sylibr | ⊢ ( 𝜑 → 𝑦 ∈ 𝐴 ) |
| 23 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝐴 𝐵 ∈ Fin ) |
| 24 | nfcsb1v | ⊢ Ⅎ 𝑗 ⦋ 𝑦 / 𝑗 ⦌ 𝐵 | |
| 25 | 24 | nfel1 | ⊢ Ⅎ 𝑗 ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ∈ Fin |
| 26 | csbeq1a | ⊢ ( 𝑗 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) | |
| 27 | 26 | eleq1d | ⊢ ( 𝑗 = 𝑦 → ( 𝐵 ∈ Fin ↔ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ∈ Fin ) ) |
| 28 | 25 27 | rspc | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑗 ∈ 𝐴 𝐵 ∈ Fin → ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ∈ Fin ) ) |
| 29 | 22 23 28 | sylc | ⊢ ( 𝜑 → ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ∈ Fin ) |
| 30 | 4 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
| 31 | nfcsb1v | ⊢ Ⅎ 𝑗 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 | |
| 32 | 31 | nfel1 | ⊢ Ⅎ 𝑗 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ |
| 33 | 24 32 | nfralw | ⊢ Ⅎ 𝑗 ∀ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ |
| 34 | csbeq1a | ⊢ ( 𝑗 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) | |
| 35 | 34 | eleq1d | ⊢ ( 𝑗 = 𝑦 → ( 𝐶 ∈ ℂ ↔ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ ) ) |
| 36 | 26 35 | raleqbidv | ⊢ ( 𝑗 = 𝑦 → ( ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ↔ ∀ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ ) ) |
| 37 | 33 36 | rspc | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ → ∀ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ ) ) |
| 38 | 22 30 37 | sylc | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ ) |
| 39 | 38 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) → ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ ) |
| 40 | 29 39 | fprodcl | ⊢ ( 𝜑 → ∏ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ ) |
| 41 | csbeq1 | ⊢ ( 𝑚 = 𝑦 → ⦋ 𝑚 / 𝑗 ⦌ 𝐵 = ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) | |
| 42 | csbeq1 | ⊢ ( 𝑚 = 𝑦 → ⦋ 𝑚 / 𝑗 ⦌ 𝐶 = ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) | |
| 43 | 42 | adantr | ⊢ ( ( 𝑚 = 𝑦 ∧ 𝑘 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) → ⦋ 𝑚 / 𝑗 ⦌ 𝐶 = ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
| 44 | 41 43 | prodeq12dv | ⊢ ( 𝑚 = 𝑦 → ∏ 𝑘 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑗 ⦌ 𝐶 = ∏ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
| 45 | 44 | prodsn | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ∏ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ ) → ∏ 𝑚 ∈ { 𝑦 } ∏ 𝑘 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑗 ⦌ 𝐶 = ∏ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
| 46 | 22 40 45 | syl2anc | ⊢ ( 𝜑 → ∏ 𝑚 ∈ { 𝑦 } ∏ 𝑘 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑗 ⦌ 𝐶 = ∏ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
| 47 | nfcv | ⊢ Ⅎ 𝑚 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 | |
| 48 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 | |
| 49 | csbeq1a | ⊢ ( 𝑘 = 𝑚 → ⦋ 𝑦 / 𝑗 ⦌ 𝐶 = ⦋ 𝑚 / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) | |
| 50 | 47 48 49 | cbvprodi | ⊢ ∏ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 = ∏ 𝑚 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 |
| 51 | csbeq1 | ⊢ ( 𝑚 = ( 2nd ‘ 𝑧 ) → ⦋ 𝑚 / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) | |
| 52 | snfi | ⊢ { 𝑦 } ∈ Fin | |
| 53 | xpfi | ⊢ ( ( { 𝑦 } ∈ Fin ∧ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ∈ Fin ) → ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ∈ Fin ) | |
| 54 | 52 29 53 | sylancr | ⊢ ( 𝜑 → ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ∈ Fin ) |
| 55 | 2ndconst | ⊢ ( 𝑦 ∈ 𝐴 → ( 2nd ↾ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) : ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) –1-1-onto→ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) | |
| 56 | 22 55 | syl | ⊢ ( 𝜑 → ( 2nd ↾ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) : ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) –1-1-onto→ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) |
| 57 | fvres | ⊢ ( 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) → ( ( 2nd ↾ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ‘ 𝑧 ) = ( 2nd ‘ 𝑧 ) ) | |
| 58 | 57 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) → ( ( 2nd ↾ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ‘ 𝑧 ) = ( 2nd ‘ 𝑧 ) ) |
| 59 | 48 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ |
| 60 | 49 | eleq1d | ⊢ ( 𝑘 = 𝑚 → ( ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ ↔ ⦋ 𝑚 / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ ) ) |
| 61 | 59 60 | rspc | ⊢ ( 𝑚 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 → ( ∀ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ → ⦋ 𝑚 / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ ) ) |
| 62 | 38 61 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) → ⦋ 𝑚 / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ∈ ℂ ) |
| 63 | 51 54 56 58 62 | fprodf1o | ⊢ ( 𝜑 → ∏ 𝑚 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 = ∏ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
| 64 | elxp | ⊢ ( 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ↔ ∃ 𝑚 ∃ 𝑘 ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ) | |
| 65 | nfv | ⊢ Ⅎ 𝑗 𝑧 = 〈 𝑚 , 𝑘 〉 | |
| 66 | nfv | ⊢ Ⅎ 𝑗 𝑚 ∈ { 𝑦 } | |
| 67 | 24 | nfcri | ⊢ Ⅎ 𝑗 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 |
| 68 | 66 67 | nfan | ⊢ Ⅎ 𝑗 ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) |
| 69 | 65 68 | nfan | ⊢ Ⅎ 𝑗 ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) |
| 70 | 69 | nfex | ⊢ Ⅎ 𝑗 ∃ 𝑘 ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) |
| 71 | nfv | ⊢ Ⅎ 𝑚 ∃ 𝑘 ( 𝑧 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) | |
| 72 | opeq1 | ⊢ ( 𝑚 = 𝑗 → 〈 𝑚 , 𝑘 〉 = 〈 𝑗 , 𝑘 〉 ) | |
| 73 | 72 | eqeq2d | ⊢ ( 𝑚 = 𝑗 → ( 𝑧 = 〈 𝑚 , 𝑘 〉 ↔ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ) |
| 74 | eleq1w | ⊢ ( 𝑚 = 𝑗 → ( 𝑚 ∈ { 𝑦 } ↔ 𝑗 ∈ { 𝑦 } ) ) | |
| 75 | velsn | ⊢ ( 𝑗 ∈ { 𝑦 } ↔ 𝑗 = 𝑦 ) | |
| 76 | 74 75 | bitrdi | ⊢ ( 𝑚 = 𝑗 → ( 𝑚 ∈ { 𝑦 } ↔ 𝑗 = 𝑦 ) ) |
| 77 | 76 | anbi1d | ⊢ ( 𝑚 = 𝑗 → ( ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ↔ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ) |
| 78 | 26 | eleq2d | ⊢ ( 𝑗 = 𝑦 → ( 𝑘 ∈ 𝐵 ↔ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) |
| 79 | 78 | pm5.32i | ⊢ ( ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) |
| 80 | 77 79 | bitr4di | ⊢ ( 𝑚 = 𝑗 → ( ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ↔ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) ) |
| 81 | 73 80 | anbi12d | ⊢ ( 𝑚 = 𝑗 → ( ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ↔ ( 𝑧 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) ) ) |
| 82 | 81 | exbidv | ⊢ ( 𝑚 = 𝑗 → ( ∃ 𝑘 ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ↔ ∃ 𝑘 ( 𝑧 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) ) ) |
| 83 | 70 71 82 | cbvexv1 | ⊢ ( ∃ 𝑚 ∃ 𝑘 ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑦 } ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ↔ ∃ 𝑗 ∃ 𝑘 ( 𝑧 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) ) |
| 84 | 64 83 | bitri | ⊢ ( 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ↔ ∃ 𝑗 ∃ 𝑘 ( 𝑧 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) ) |
| 85 | nfv | ⊢ Ⅎ 𝑗 𝜑 | |
| 86 | nfcv | ⊢ Ⅎ 𝑗 ( 2nd ‘ 𝑧 ) | |
| 87 | 86 31 | nfcsbw | ⊢ Ⅎ 𝑗 ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 |
| 88 | 87 | nfeq2 | ⊢ Ⅎ 𝑗 𝐷 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 |
| 89 | nfv | ⊢ Ⅎ 𝑘 𝜑 | |
| 90 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 | |
| 91 | 90 | nfeq2 | ⊢ Ⅎ 𝑘 𝐷 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 |
| 92 | 1 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐷 = 𝐶 ) |
| 93 | 34 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 = ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
| 94 | fveq2 | ⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → ( 2nd ‘ 𝑧 ) = ( 2nd ‘ 〈 𝑗 , 𝑘 〉 ) ) | |
| 95 | vex | ⊢ 𝑗 ∈ V | |
| 96 | vex | ⊢ 𝑘 ∈ V | |
| 97 | 95 96 | op2nd | ⊢ ( 2nd ‘ 〈 𝑗 , 𝑘 〉 ) = 𝑘 |
| 98 | 94 97 | eqtr2di | ⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → 𝑘 = ( 2nd ‘ 𝑧 ) ) |
| 99 | 98 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) → 𝑘 = ( 2nd ‘ 𝑧 ) ) |
| 100 | csbeq1a | ⊢ ( 𝑘 = ( 2nd ‘ 𝑧 ) → ⦋ 𝑦 / 𝑗 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) | |
| 101 | 99 100 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) → ⦋ 𝑦 / 𝑗 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
| 102 | 92 93 101 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐷 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
| 103 | 102 | expl | ⊢ ( 𝜑 → ( ( 𝑧 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐷 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) ) |
| 104 | 89 91 103 | exlimd | ⊢ ( 𝜑 → ( ∃ 𝑘 ( 𝑧 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐷 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) ) |
| 105 | 85 88 104 | exlimd | ⊢ ( 𝜑 → ( ∃ 𝑗 ∃ 𝑘 ( 𝑧 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐷 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) ) |
| 106 | 84 105 | biimtrid | ⊢ ( 𝜑 → ( 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) → 𝐷 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) ) |
| 107 | 106 | imp | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) → 𝐷 = ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
| 108 | 107 | prodeq2dv | ⊢ ( 𝜑 → ∏ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) 𝐷 = ∏ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 ) |
| 109 | 63 108 | eqtr4d | ⊢ ( 𝜑 → ∏ 𝑚 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑘 ⦌ ⦋ 𝑦 / 𝑗 ⦌ 𝐶 = ∏ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) 𝐷 ) |
| 110 | 50 109 | eqtrid | ⊢ ( 𝜑 → ∏ 𝑘 ∈ ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑗 ⦌ 𝐶 = ∏ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) 𝐷 ) |
| 111 | 46 110 | eqtrd | ⊢ ( 𝜑 → ∏ 𝑚 ∈ { 𝑦 } ∏ 𝑘 ∈ ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ⦋ 𝑚 / 𝑗 ⦌ 𝐶 = ∏ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) 𝐷 ) |
| 112 | 18 111 | eqtrid | ⊢ ( 𝜑 → ∏ 𝑗 ∈ { 𝑦 } ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) 𝐷 ) |
| 113 | 112 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∏ 𝑗 ∈ { 𝑦 } ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) 𝐷 ) |
| 114 | 9 113 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 · ∏ 𝑗 ∈ { 𝑦 } ∏ 𝑘 ∈ 𝐵 𝐶 ) = ( ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 · ∏ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) 𝐷 ) ) |
| 115 | disjsn | ⊢ ( ( 𝑥 ∩ { 𝑦 } ) = ∅ ↔ ¬ 𝑦 ∈ 𝑥 ) | |
| 116 | 5 115 | sylibr | ⊢ ( 𝜑 → ( 𝑥 ∩ { 𝑦 } ) = ∅ ) |
| 117 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∪ { 𝑦 } ) = ( 𝑥 ∪ { 𝑦 } ) ) | |
| 118 | 2 6 | ssfid | ⊢ ( 𝜑 → ( 𝑥 ∪ { 𝑦 } ) ∈ Fin ) |
| 119 | 6 | sselda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → 𝑗 ∈ 𝐴 ) |
| 120 | 4 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 121 | 3 120 | fprodcl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ∏ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
| 122 | 119 121 | syldan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → ∏ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
| 123 | 116 117 118 122 | fprodsplit | ⊢ ( 𝜑 → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ( ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 · ∏ 𝑗 ∈ { 𝑦 } ∏ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 124 | 123 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ( ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 · ∏ 𝑗 ∈ { 𝑦 } ∏ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 125 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑗 ∈ 𝑥 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) | |
| 126 | xp1st | ⊢ ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 1st ‘ 𝑧 ) ∈ { 𝑗 } ) | |
| 127 | elsni | ⊢ ( ( 1st ‘ 𝑧 ) ∈ { 𝑗 } → ( 1st ‘ 𝑧 ) = 𝑗 ) | |
| 128 | 126 127 | syl | ⊢ ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 1st ‘ 𝑧 ) = 𝑗 ) |
| 129 | 128 | eleq1d | ⊢ ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( ( 1st ‘ 𝑧 ) ∈ 𝑥 ↔ 𝑗 ∈ 𝑥 ) ) |
| 130 | 129 | biimparc | ⊢ ( ( 𝑗 ∈ 𝑥 ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → ( 1st ‘ 𝑧 ) ∈ 𝑥 ) |
| 131 | 130 | rexlimiva | ⊢ ( ∃ 𝑗 ∈ 𝑥 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 1st ‘ 𝑧 ) ∈ 𝑥 ) |
| 132 | 125 131 | sylbi | ⊢ ( 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) → ( 1st ‘ 𝑧 ) ∈ 𝑥 ) |
| 133 | xp1st | ⊢ ( 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) → ( 1st ‘ 𝑧 ) ∈ { 𝑦 } ) | |
| 134 | 132 133 | anim12i | ⊢ ( ( 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∧ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) → ( ( 1st ‘ 𝑧 ) ∈ 𝑥 ∧ ( 1st ‘ 𝑧 ) ∈ { 𝑦 } ) ) |
| 135 | elin | ⊢ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ↔ ( 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∧ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ) | |
| 136 | elin | ⊢ ( ( 1st ‘ 𝑧 ) ∈ ( 𝑥 ∩ { 𝑦 } ) ↔ ( ( 1st ‘ 𝑧 ) ∈ 𝑥 ∧ ( 1st ‘ 𝑧 ) ∈ { 𝑦 } ) ) | |
| 137 | 134 135 136 | 3imtr4i | ⊢ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) → ( 1st ‘ 𝑧 ) ∈ ( 𝑥 ∩ { 𝑦 } ) ) |
| 138 | 116 | eleq2d | ⊢ ( 𝜑 → ( ( 1st ‘ 𝑧 ) ∈ ( 𝑥 ∩ { 𝑦 } ) ↔ ( 1st ‘ 𝑧 ) ∈ ∅ ) ) |
| 139 | noel | ⊢ ¬ ( 1st ‘ 𝑧 ) ∈ ∅ | |
| 140 | 139 | pm2.21i | ⊢ ( ( 1st ‘ 𝑧 ) ∈ ∅ → 𝑧 ∈ ∅ ) |
| 141 | 138 140 | biimtrdi | ⊢ ( 𝜑 → ( ( 1st ‘ 𝑧 ) ∈ ( 𝑥 ∩ { 𝑦 } ) → 𝑧 ∈ ∅ ) ) |
| 142 | 137 141 | syl5 | ⊢ ( 𝜑 → ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) → 𝑧 ∈ ∅ ) ) |
| 143 | 142 | ssrdv | ⊢ ( 𝜑 → ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ⊆ ∅ ) |
| 144 | ss0 | ⊢ ( ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ⊆ ∅ → ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) = ∅ ) | |
| 145 | 143 144 | syl | ⊢ ( 𝜑 → ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) = ∅ ) |
| 146 | iunxun | ⊢ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) = ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∪ ∪ 𝑗 ∈ { 𝑦 } ( { 𝑗 } × 𝐵 ) ) | |
| 147 | nfcv | ⊢ Ⅎ 𝑚 ( { 𝑗 } × 𝐵 ) | |
| 148 | nfcv | ⊢ Ⅎ 𝑗 { 𝑚 } | |
| 149 | 148 11 | nfxp | ⊢ Ⅎ 𝑗 ( { 𝑚 } × ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) |
| 150 | sneq | ⊢ ( 𝑗 = 𝑚 → { 𝑗 } = { 𝑚 } ) | |
| 151 | 150 14 | xpeq12d | ⊢ ( 𝑗 = 𝑚 → ( { 𝑗 } × 𝐵 ) = ( { 𝑚 } × ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) ) |
| 152 | 147 149 151 | cbviun | ⊢ ∪ 𝑗 ∈ { 𝑦 } ( { 𝑗 } × 𝐵 ) = ∪ 𝑚 ∈ { 𝑦 } ( { 𝑚 } × ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) |
| 153 | sneq | ⊢ ( 𝑚 = 𝑦 → { 𝑚 } = { 𝑦 } ) | |
| 154 | 153 41 | xpeq12d | ⊢ ( 𝑚 = 𝑦 → ( { 𝑚 } × ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) = ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) |
| 155 | 20 154 | iunxsn | ⊢ ∪ 𝑚 ∈ { 𝑦 } ( { 𝑚 } × ⦋ 𝑚 / 𝑗 ⦌ 𝐵 ) = ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) |
| 156 | 152 155 | eqtri | ⊢ ∪ 𝑗 ∈ { 𝑦 } ( { 𝑗 } × 𝐵 ) = ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) |
| 157 | 156 | uneq2i | ⊢ ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∪ ∪ 𝑗 ∈ { 𝑦 } ( { 𝑗 } × 𝐵 ) ) = ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) |
| 158 | 146 157 | eqtri | ⊢ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) = ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) |
| 159 | 158 | a1i | ⊢ ( 𝜑 → ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) = ( ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) ) ) |
| 160 | snfi | ⊢ { 𝑗 } ∈ Fin | |
| 161 | 119 3 | syldan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → 𝐵 ∈ Fin ) |
| 162 | xpfi | ⊢ ( ( { 𝑗 } ∈ Fin ∧ 𝐵 ∈ Fin ) → ( { 𝑗 } × 𝐵 ) ∈ Fin ) | |
| 163 | 160 161 162 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → ( { 𝑗 } × 𝐵 ) ∈ Fin ) |
| 164 | 163 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ∈ Fin ) |
| 165 | iunfi | ⊢ ( ( ( 𝑥 ∪ { 𝑦 } ) ∈ Fin ∧ ∀ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ∈ Fin ) → ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ∈ Fin ) | |
| 166 | 118 164 165 | syl2anc | ⊢ ( 𝜑 → ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ∈ Fin ) |
| 167 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) | |
| 168 | elxp | ⊢ ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑚 ∃ 𝑘 ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) | |
| 169 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) → 𝑧 = 〈 𝑚 , 𝑘 〉 ) | |
| 170 | simprrl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) → 𝑚 ∈ { 𝑗 } ) | |
| 171 | elsni | ⊢ ( 𝑚 ∈ { 𝑗 } → 𝑚 = 𝑗 ) | |
| 172 | 170 171 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) → 𝑚 = 𝑗 ) |
| 173 | 172 | opeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) → 〈 𝑚 , 𝑘 〉 = 〈 𝑗 , 𝑘 〉 ) |
| 174 | 169 173 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) → 𝑧 = 〈 𝑗 , 𝑘 〉 ) |
| 175 | 174 1 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) → 𝐷 = 𝐶 ) |
| 176 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) → 𝜑 ) | |
| 177 | 119 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) → 𝑗 ∈ 𝐴 ) |
| 178 | simprrr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) → 𝑘 ∈ 𝐵 ) | |
| 179 | 176 177 178 4 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) → 𝐶 ∈ ℂ ) |
| 180 | 175 179 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) ∧ ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) ) → 𝐷 ∈ ℂ ) |
| 181 | 180 | ex | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → ( ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) → 𝐷 ∈ ℂ ) ) |
| 182 | 181 | exlimdvv | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → ( ∃ 𝑚 ∃ 𝑘 ( 𝑧 = 〈 𝑚 , 𝑘 〉 ∧ ( 𝑚 ∈ { 𝑗 } ∧ 𝑘 ∈ 𝐵 ) ) → 𝐷 ∈ ℂ ) ) |
| 183 | 168 182 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → 𝐷 ∈ ℂ ) ) |
| 184 | 183 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → 𝐷 ∈ ℂ ) ) |
| 185 | 167 184 | biimtrid | ⊢ ( 𝜑 → ( 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) → 𝐷 ∈ ℂ ) ) |
| 186 | 185 | imp | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ) → 𝐷 ∈ ℂ ) |
| 187 | 145 159 166 186 | fprodsplit | ⊢ ( 𝜑 → ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 = ( ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 · ∏ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) 𝐷 ) ) |
| 188 | 187 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 = ( ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 · ∏ 𝑧 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑗 ⦌ 𝐵 ) 𝐷 ) ) |
| 189 | 114 124 188 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) |