This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a finite product into two parts. (Contributed by Scott Fenton, 16-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodsplit.1 | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) | |
| fprodsplit.2 | ⊢ ( 𝜑 → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) | ||
| fprodsplit.3 | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) | ||
| fprodsplit.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝐶 ∈ ℂ ) | ||
| Assertion | fprodsplit | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑈 𝐶 = ( ∏ 𝑘 ∈ 𝐴 𝐶 · ∏ 𝑘 ∈ 𝐵 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodsplit.1 | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) | |
| 2 | fprodsplit.2 | ⊢ ( 𝜑 → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) | |
| 3 | fprodsplit.3 | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) | |
| 4 | fprodsplit.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝐶 ∈ ℂ ) | |
| 5 | iftrue | ⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) = 𝐶 ) | |
| 6 | 5 | prodeq2i | ⊢ ∏ 𝑘 ∈ 𝐴 if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) = ∏ 𝑘 ∈ 𝐴 𝐶 |
| 7 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 8 | 7 2 | sseqtrrid | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) |
| 9 | 5 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) = 𝐶 ) |
| 10 | 8 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝑈 ) |
| 11 | 10 4 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 12 | 9 11 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ∈ ℂ ) |
| 13 | eldifn | ⊢ ( 𝑘 ∈ ( 𝑈 ∖ 𝐴 ) → ¬ 𝑘 ∈ 𝐴 ) | |
| 14 | 13 | iffalsed | ⊢ ( 𝑘 ∈ ( 𝑈 ∖ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) = 1 ) |
| 15 | 14 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑈 ∖ 𝐴 ) ) → if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) = 1 ) |
| 16 | 8 12 15 3 | fprodss | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) = ∏ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) |
| 17 | 6 16 | eqtr3id | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) |
| 18 | iftrue | ⊢ ( 𝑘 ∈ 𝐵 → if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) = 𝐶 ) | |
| 19 | 18 | prodeq2i | ⊢ ∏ 𝑘 ∈ 𝐵 if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) = ∏ 𝑘 ∈ 𝐵 𝐶 |
| 20 | ssun2 | ⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 21 | 20 2 | sseqtrrid | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑈 ) |
| 22 | 18 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) = 𝐶 ) |
| 23 | 21 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝑘 ∈ 𝑈 ) |
| 24 | 23 4 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 25 | 22 24 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ∈ ℂ ) |
| 26 | eldifn | ⊢ ( 𝑘 ∈ ( 𝑈 ∖ 𝐵 ) → ¬ 𝑘 ∈ 𝐵 ) | |
| 27 | 26 | iffalsed | ⊢ ( 𝑘 ∈ ( 𝑈 ∖ 𝐵 ) → if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) = 1 ) |
| 28 | 27 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑈 ∖ 𝐵 ) ) → if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) = 1 ) |
| 29 | 21 25 28 3 | fprodss | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐵 if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) = ∏ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) |
| 30 | 19 29 | eqtr3id | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) |
| 31 | 17 30 | oveq12d | ⊢ ( 𝜑 → ( ∏ 𝑘 ∈ 𝐴 𝐶 · ∏ 𝑘 ∈ 𝐵 𝐶 ) = ( ∏ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) · ∏ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) |
| 32 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 33 | ifcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 1 ∈ ℂ ) → if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ∈ ℂ ) | |
| 34 | 4 32 33 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ∈ ℂ ) |
| 35 | ifcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 1 ∈ ℂ ) → if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ∈ ℂ ) | |
| 36 | 4 32 35 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ∈ ℂ ) |
| 37 | 3 34 36 | fprodmul | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑈 ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) · if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) = ( ∏ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) · ∏ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) |
| 38 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑈 ↔ 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ) ) |
| 39 | elun | ⊢ ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) | |
| 40 | 38 39 | bitrdi | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑈 ↔ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) ) |
| 41 | 40 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) |
| 42 | disjel | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝑘 ∈ 𝐴 ) → ¬ 𝑘 ∈ 𝐵 ) | |
| 43 | 1 42 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ 𝑘 ∈ 𝐵 ) |
| 44 | 43 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) = 1 ) |
| 45 | 9 44 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) · if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) = ( 𝐶 · 1 ) ) |
| 46 | 11 | mulridd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐶 · 1 ) = 𝐶 ) |
| 47 | 45 46 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) · if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) = 𝐶 ) |
| 48 | 43 | ex | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → ¬ 𝑘 ∈ 𝐵 ) ) |
| 49 | 48 | con2d | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐵 → ¬ 𝑘 ∈ 𝐴 ) ) |
| 50 | 49 | imp | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ¬ 𝑘 ∈ 𝐴 ) |
| 51 | 50 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) = 1 ) |
| 52 | 51 22 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) · if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) = ( 1 · 𝐶 ) ) |
| 53 | 24 | mullidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 1 · 𝐶 ) = 𝐶 ) |
| 54 | 52 53 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) · if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) = 𝐶 ) |
| 55 | 47 54 | jaodan | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) → ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) · if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) = 𝐶 ) |
| 56 | 41 55 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) · if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) = 𝐶 ) |
| 57 | 56 | prodeq2dv | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑈 ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) · if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) = ∏ 𝑘 ∈ 𝑈 𝐶 ) |
| 58 | 31 37 57 | 3eqtr2rd | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑈 𝐶 = ( ∏ 𝑘 ∈ 𝐴 𝐶 · ∏ 𝑘 ∈ 𝐵 𝐶 ) ) |