This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Re-index a finite product using a bijection. (Contributed by Scott Fenton, 7-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodf1o.1 | ⊢ ( 𝑘 = 𝐺 → 𝐵 = 𝐷 ) | |
| fprodf1o.2 | ⊢ ( 𝜑 → 𝐶 ∈ Fin ) | ||
| fprodf1o.3 | ⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) | ||
| fprodf1o.4 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑛 ) = 𝐺 ) | ||
| fprodf1o.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| Assertion | fprodf1o | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑛 ∈ 𝐶 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodf1o.1 | ⊢ ( 𝑘 = 𝐺 → 𝐵 = 𝐷 ) | |
| 2 | fprodf1o.2 | ⊢ ( 𝜑 → 𝐶 ∈ Fin ) | |
| 3 | fprodf1o.3 | ⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) | |
| 4 | fprodf1o.4 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑛 ) = 𝐺 ) | |
| 5 | fprodf1o.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 6 | prod0 | ⊢ ∏ 𝑘 ∈ ∅ 𝐵 = 1 | |
| 7 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 = ∅ ) → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) |
| 8 | f1oeq2 | ⊢ ( 𝐶 = ∅ → ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 ↔ 𝐹 : ∅ –1-1-onto→ 𝐴 ) ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝜑 ∧ 𝐶 = ∅ ) → ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 ↔ 𝐹 : ∅ –1-1-onto→ 𝐴 ) ) |
| 10 | 7 9 | mpbid | ⊢ ( ( 𝜑 ∧ 𝐶 = ∅ ) → 𝐹 : ∅ –1-1-onto→ 𝐴 ) |
| 11 | f1ofo | ⊢ ( 𝐹 : ∅ –1-1-onto→ 𝐴 → 𝐹 : ∅ –onto→ 𝐴 ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝜑 ∧ 𝐶 = ∅ ) → 𝐹 : ∅ –onto→ 𝐴 ) |
| 13 | fo00 | ⊢ ( 𝐹 : ∅ –onto→ 𝐴 ↔ ( 𝐹 = ∅ ∧ 𝐴 = ∅ ) ) | |
| 14 | 13 | simprbi | ⊢ ( 𝐹 : ∅ –onto→ 𝐴 → 𝐴 = ∅ ) |
| 15 | 12 14 | syl | ⊢ ( ( 𝜑 ∧ 𝐶 = ∅ ) → 𝐴 = ∅ ) |
| 16 | 15 | prodeq1d | ⊢ ( ( 𝜑 ∧ 𝐶 = ∅ ) → ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑘 ∈ ∅ 𝐵 ) |
| 17 | prodeq1 | ⊢ ( 𝐶 = ∅ → ∏ 𝑛 ∈ 𝐶 𝐷 = ∏ 𝑛 ∈ ∅ 𝐷 ) | |
| 18 | prod0 | ⊢ ∏ 𝑛 ∈ ∅ 𝐷 = 1 | |
| 19 | 17 18 | eqtrdi | ⊢ ( 𝐶 = ∅ → ∏ 𝑛 ∈ 𝐶 𝐷 = 1 ) |
| 20 | 19 | adantl | ⊢ ( ( 𝜑 ∧ 𝐶 = ∅ ) → ∏ 𝑛 ∈ 𝐶 𝐷 = 1 ) |
| 21 | 6 16 20 | 3eqtr4a | ⊢ ( ( 𝜑 ∧ 𝐶 = ∅ ) → ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑛 ∈ 𝐶 𝐷 ) |
| 22 | 21 | ex | ⊢ ( 𝜑 → ( 𝐶 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑛 ∈ 𝐶 𝐷 ) ) |
| 23 | 2fveq3 | ⊢ ( 𝑚 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) | |
| 24 | simprl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) → ( ♯ ‘ 𝐶 ) ∈ ℕ ) | |
| 25 | simprr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) | |
| 26 | f1of | ⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → 𝐹 : 𝐶 ⟶ 𝐴 ) | |
| 27 | 3 26 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ 𝐴 ) |
| 28 | 27 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑚 ) ∈ 𝐴 ) |
| 29 | 5 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 30 | 29 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ∈ ℂ ) |
| 31 | 28 30 | syldan | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐶 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ∈ ℂ ) |
| 32 | 31 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) ∧ 𝑚 ∈ 𝐶 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ∈ ℂ ) |
| 33 | simpr | ⊢ ( ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) | |
| 34 | f1oco | ⊢ ( ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) → ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐴 ) | |
| 35 | 3 33 34 | syl2an | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) → ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐴 ) |
| 36 | f1of | ⊢ ( ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐴 → ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐶 ) ) ⟶ 𝐴 ) | |
| 37 | 35 36 | syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) → ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐶 ) ) ⟶ 𝐴 ) |
| 38 | fvco3 | ⊢ ( ( ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐶 ) ) ⟶ 𝐴 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐶 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ ( 𝐹 ∘ 𝑓 ) ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑛 ) ) ) | |
| 39 | 37 38 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐶 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ ( 𝐹 ∘ 𝑓 ) ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑛 ) ) ) |
| 40 | f1of | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) ⟶ 𝐶 ) | |
| 41 | 40 | adantl | ⊢ ( ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) ⟶ 𝐶 ) |
| 42 | 41 | adantl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) ⟶ 𝐶 ) |
| 43 | fvco3 | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) ⟶ 𝐶 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐶 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 44 | 42 43 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐶 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 45 | 44 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐶 ) ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑛 ) ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
| 46 | 39 45 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐶 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ ( 𝐹 ∘ 𝑓 ) ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
| 47 | 23 24 25 32 46 | fprod | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) → ∏ 𝑚 ∈ 𝐶 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) = ( seq 1 ( · , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ ( 𝐹 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝐶 ) ) ) |
| 48 | 27 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝐴 ) |
| 49 | 4 48 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → 𝐺 ∈ 𝐴 ) |
| 50 | eqid | ⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) | |
| 51 | 1 50 | fvmpti | ⊢ ( 𝐺 ∈ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝐺 ) = ( I ‘ 𝐷 ) ) |
| 52 | 49 51 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝐺 ) = ( I ‘ 𝐷 ) ) |
| 53 | 4 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑛 ) ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝐺 ) ) |
| 54 | eqid | ⊢ ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) = ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) | |
| 55 | 54 | fvmpt2i | ⊢ ( 𝑛 ∈ 𝐶 → ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑛 ) = ( I ‘ 𝐷 ) ) |
| 56 | 55 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑛 ) = ( I ‘ 𝐷 ) ) |
| 57 | 52 53 56 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
| 58 | 57 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝐶 ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
| 59 | nffvmpt1 | ⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑚 ) | |
| 60 | 59 | nfeq1 | ⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) |
| 61 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑛 ) = ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑚 ) ) | |
| 62 | 2fveq3 | ⊢ ( 𝑛 = 𝑚 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑛 ) ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ) | |
| 63 | 61 62 | eqeq12d | ⊢ ( 𝑛 = 𝑚 → ( ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑛 ) ) ↔ ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 64 | 60 63 | rspc | ⊢ ( 𝑚 ∈ 𝐶 → ( ∀ 𝑛 ∈ 𝐶 ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑛 ) ) → ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 65 | 58 64 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐶 ) → ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ) |
| 66 | 65 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) ∧ 𝑚 ∈ 𝐶 ) → ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ) |
| 67 | 66 | prodeq2dv | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) → ∏ 𝑚 ∈ 𝐶 ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑚 ) = ∏ 𝑚 ∈ 𝐶 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ) |
| 68 | fveq2 | ⊢ ( 𝑚 = ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑛 ) ) ) | |
| 69 | 29 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 70 | 69 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) ∈ ℂ ) |
| 71 | 68 24 35 70 39 | fprod | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) → ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ( seq 1 ( · , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ ( 𝐹 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝐶 ) ) ) |
| 72 | 47 67 71 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) → ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ∏ 𝑚 ∈ 𝐶 ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑚 ) ) |
| 73 | prodfc | ⊢ ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ∏ 𝑘 ∈ 𝐴 𝐵 | |
| 74 | prodfc | ⊢ ∏ 𝑚 ∈ 𝐶 ( ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑚 ) = ∏ 𝑛 ∈ 𝐶 𝐷 | |
| 75 | 72 73 74 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) → ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑛 ∈ 𝐶 𝐷 ) |
| 76 | 75 | expr | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐶 ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 → ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑛 ∈ 𝐶 𝐷 ) ) |
| 77 | 76 | exlimdv | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐶 ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 → ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑛 ∈ 𝐶 𝐷 ) ) |
| 78 | 77 | expimpd | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) → ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑛 ∈ 𝐶 𝐷 ) ) |
| 79 | fz1f1o | ⊢ ( 𝐶 ∈ Fin → ( 𝐶 = ∅ ∨ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) ) | |
| 80 | 2 79 | syl | ⊢ ( 𝜑 → ( 𝐶 = ∅ ∨ ( ( ♯ ‘ 𝐶 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) ) |
| 81 | 22 78 80 | mpjaod | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑛 ∈ 𝐶 𝐷 ) |