This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for product: if x is (effectively) not free in A and B , it is not free in prod_ k e. A B . (Contributed by Scott Fenton, 1-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfcprod.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| nfcprod.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| Assertion | nfcprod | ⊢ Ⅎ 𝑥 ∏ 𝑘 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcprod.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | nfcprod.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | df-prod | ⊢ ∏ 𝑘 ∈ 𝐴 𝐵 = ( ℩ 𝑦 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑧 ( 𝑧 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑧 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑥 ℤ | |
| 5 | nfcv | ⊢ Ⅎ 𝑥 ( ℤ≥ ‘ 𝑚 ) | |
| 6 | 1 5 | nfss | ⊢ Ⅎ 𝑥 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) |
| 7 | nfv | ⊢ Ⅎ 𝑥 𝑧 ≠ 0 | |
| 8 | nfcv | ⊢ Ⅎ 𝑥 𝑛 | |
| 9 | nfcv | ⊢ Ⅎ 𝑥 · | |
| 10 | 1 | nfcri | ⊢ Ⅎ 𝑥 𝑘 ∈ 𝐴 |
| 11 | nfcv | ⊢ Ⅎ 𝑥 1 | |
| 12 | 10 2 11 | nfif | ⊢ Ⅎ 𝑥 if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) |
| 13 | 4 12 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
| 14 | 8 9 13 | nfseq | ⊢ Ⅎ 𝑥 seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) |
| 15 | nfcv | ⊢ Ⅎ 𝑥 ⇝ | |
| 16 | nfcv | ⊢ Ⅎ 𝑥 𝑧 | |
| 17 | 14 15 16 | nfbr | ⊢ Ⅎ 𝑥 seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑧 |
| 18 | 7 17 | nfan | ⊢ Ⅎ 𝑥 ( 𝑧 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑧 ) |
| 19 | 18 | nfex | ⊢ Ⅎ 𝑥 ∃ 𝑧 ( 𝑧 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑧 ) |
| 20 | 5 19 | nfrexw | ⊢ Ⅎ 𝑥 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑧 ( 𝑧 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑧 ) |
| 21 | nfcv | ⊢ Ⅎ 𝑥 𝑚 | |
| 22 | 21 9 13 | nfseq | ⊢ Ⅎ 𝑥 seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) |
| 23 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 24 | 22 15 23 | nfbr | ⊢ Ⅎ 𝑥 seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 |
| 25 | 6 20 24 | nf3an | ⊢ Ⅎ 𝑥 ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑧 ( 𝑧 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑧 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) |
| 26 | 4 25 | nfrexw | ⊢ Ⅎ 𝑥 ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑧 ( 𝑧 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑧 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) |
| 27 | nfcv | ⊢ Ⅎ 𝑥 ℕ | |
| 28 | nfcv | ⊢ Ⅎ 𝑥 𝑓 | |
| 29 | nfcv | ⊢ Ⅎ 𝑥 ( 1 ... 𝑚 ) | |
| 30 | 28 29 1 | nff1o | ⊢ Ⅎ 𝑥 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 |
| 31 | nfcv | ⊢ Ⅎ 𝑥 ( 𝑓 ‘ 𝑛 ) | |
| 32 | 31 2 | nfcsbw | ⊢ Ⅎ 𝑥 ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 |
| 33 | 27 32 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) |
| 34 | 11 9 33 | nfseq | ⊢ Ⅎ 𝑥 seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) |
| 35 | 34 21 | nffv | ⊢ Ⅎ 𝑥 ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) |
| 36 | 35 | nfeq2 | ⊢ Ⅎ 𝑥 𝑦 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) |
| 37 | 30 36 | nfan | ⊢ Ⅎ 𝑥 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
| 38 | 37 | nfex | ⊢ Ⅎ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
| 39 | 27 38 | nfrexw | ⊢ Ⅎ 𝑥 ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
| 40 | 26 39 | nfor | ⊢ Ⅎ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑧 ( 𝑧 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑧 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) |
| 41 | 40 | nfiotaw | ⊢ Ⅎ 𝑥 ( ℩ 𝑦 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑧 ( 𝑧 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑧 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
| 42 | 3 41 | nfcxfr | ⊢ Ⅎ 𝑥 ∏ 𝑘 ∈ 𝐴 𝐵 |