This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write a double product as a product over a two-dimensional region. Compare fsum2d . (Contributed by Scott Fenton, 30-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprod2d.1 | ⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → 𝐷 = 𝐶 ) | |
| fprod2d.2 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fprod2d.3 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ Fin ) | ||
| fprod2d.4 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ℂ ) | ||
| Assertion | fprod2d | ⊢ ( 𝜑 → ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprod2d.1 | ⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → 𝐷 = 𝐶 ) | |
| 2 | fprod2d.2 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 3 | fprod2d.3 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ Fin ) | |
| 4 | fprod2d.4 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ℂ ) | |
| 5 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 6 | sseq1 | ⊢ ( 𝑤 = ∅ → ( 𝑤 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) | |
| 7 | prodeq1 | ⊢ ( 𝑤 = ∅ → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑗 ∈ ∅ ∏ 𝑘 ∈ 𝐵 𝐶 ) | |
| 8 | iuneq1 | ⊢ ( 𝑤 = ∅ → ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) = ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) ) | |
| 9 | 0iun | ⊢ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) = ∅ | |
| 10 | 8 9 | eqtrdi | ⊢ ( 𝑤 = ∅ → ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) = ∅ ) |
| 11 | 10 | prodeq1d | ⊢ ( 𝑤 = ∅ → ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 = ∏ 𝑧 ∈ ∅ 𝐷 ) |
| 12 | 7 11 | eqeq12d | ⊢ ( 𝑤 = ∅ → ( ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ↔ ∏ 𝑗 ∈ ∅ ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∅ 𝐷 ) ) |
| 13 | 6 12 | imbi12d | ⊢ ( 𝑤 = ∅ → ( ( 𝑤 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ↔ ( ∅ ⊆ 𝐴 → ∏ 𝑗 ∈ ∅ ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∅ 𝐷 ) ) ) |
| 14 | 13 | imbi2d | ⊢ ( 𝑤 = ∅ → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐴 → ∏ 𝑗 ∈ ∅ ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∅ 𝐷 ) ) ) ) |
| 15 | sseq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴 ) ) | |
| 16 | prodeq1 | ⊢ ( 𝑤 = 𝑥 → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 ) | |
| 17 | iuneq1 | ⊢ ( 𝑤 = 𝑥 → ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) = ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ) | |
| 18 | 17 | prodeq1d | ⊢ ( 𝑤 = 𝑥 → ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) |
| 19 | 16 18 | eqeq12d | ⊢ ( 𝑤 = 𝑥 → ( ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ↔ ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
| 20 | 15 19 | imbi12d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ↔ ( 𝑥 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
| 21 | 20 | imbi2d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ↔ ( 𝜑 → ( 𝑥 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
| 22 | sseq1 | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( 𝑤 ⊆ 𝐴 ↔ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) | |
| 23 | prodeq1 | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 ) | |
| 24 | iuneq1 | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) = ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ) | |
| 25 | 24 | prodeq1d | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) |
| 26 | 23 25 | eqeq12d | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ↔ ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
| 27 | 22 26 | imbi12d | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( ( 𝑤 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ↔ ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
| 28 | 27 | imbi2d | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ↔ ( 𝜑 → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
| 29 | sseq1 | ⊢ ( 𝑤 = 𝐴 → ( 𝑤 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) | |
| 30 | prodeq1 | ⊢ ( 𝑤 = 𝐴 → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐶 ) | |
| 31 | iuneq1 | ⊢ ( 𝑤 = 𝐴 → ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) = ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) | |
| 32 | 31 | prodeq1d | ⊢ ( 𝑤 = 𝐴 → ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) |
| 33 | 30 32 | eqeq12d | ⊢ ( 𝑤 = 𝐴 → ( ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ↔ ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
| 34 | 29 33 | imbi12d | ⊢ ( 𝑤 = 𝐴 → ( ( 𝑤 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ↔ ( 𝐴 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
| 35 | 34 | imbi2d | ⊢ ( 𝑤 = 𝐴 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ↔ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
| 36 | prod0 | ⊢ ∏ 𝑗 ∈ ∅ ∏ 𝑘 ∈ 𝐵 𝐶 = 1 | |
| 37 | prod0 | ⊢ ∏ 𝑧 ∈ ∅ 𝐷 = 1 | |
| 38 | 36 37 | eqtr4i | ⊢ ∏ 𝑗 ∈ ∅ ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∅ 𝐷 |
| 39 | 38 | 2a1i | ⊢ ( 𝜑 → ( ∅ ⊆ 𝐴 → ∏ 𝑗 ∈ ∅ ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∅ 𝐷 ) ) |
| 40 | ssun1 | ⊢ 𝑥 ⊆ ( 𝑥 ∪ { 𝑦 } ) | |
| 41 | sstr | ⊢ ( ( 𝑥 ⊆ ( 𝑥 ∪ { 𝑦 } ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑥 ⊆ 𝐴 ) | |
| 42 | 40 41 | mpan | ⊢ ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → 𝑥 ⊆ 𝐴 ) |
| 43 | 42 | imim1i | ⊢ ( ( 𝑥 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
| 44 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝐴 ∈ Fin ) |
| 45 | 3 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ Fin ) |
| 46 | 4 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ℂ ) |
| 47 | simplr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ¬ 𝑦 ∈ 𝑥 ) | |
| 48 | simpr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) | |
| 49 | biid | ⊢ ( ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ↔ ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) | |
| 50 | 1 44 45 46 47 48 49 | fprod2dlem | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) |
| 51 | 50 | exp31 | ⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
| 52 | 51 | a2d | ⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
| 53 | 43 52 | syl5 | ⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( 𝑥 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
| 54 | 53 | expcom | ⊢ ( ¬ 𝑦 ∈ 𝑥 → ( 𝜑 → ( ( 𝑥 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
| 55 | 54 | a2d | ⊢ ( ¬ 𝑦 ∈ 𝑥 → ( ( 𝜑 → ( 𝑥 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) → ( 𝜑 → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
| 56 | 55 | adantl | ⊢ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( 𝜑 → ( 𝑥 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) → ( 𝜑 → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
| 57 | 14 21 28 35 39 56 | findcard2s | ⊢ ( 𝐴 ∈ Fin → ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
| 58 | 2 57 | mpcom | ⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
| 59 | 5 58 | mpi | ⊢ ( 𝜑 → ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) |