This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fmfnfm . (Contributed by Jeff Hankins, 19-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmfnfm.b | ⊢ ( 𝜑 → 𝐵 ∈ ( fBas ‘ 𝑌 ) ) | |
| fmfnfm.l | ⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) | ||
| fmfnfm.f | ⊢ ( 𝜑 → 𝐹 : 𝑌 ⟶ 𝑋 ) | ||
| fmfnfm.fm | ⊢ ( 𝜑 → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ⊆ 𝐿 ) | ||
| Assertion | fmfnfmlem4 | ⊢ ( 𝜑 → ( 𝑡 ∈ 𝐿 ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmfnfm.b | ⊢ ( 𝜑 → 𝐵 ∈ ( fBas ‘ 𝑌 ) ) | |
| 2 | fmfnfm.l | ⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) | |
| 3 | fmfnfm.f | ⊢ ( 𝜑 → 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 4 | fmfnfm.fm | ⊢ ( 𝜑 → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ⊆ 𝐿 ) | |
| 5 | filelss | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡 ∈ 𝐿 ) → 𝑡 ⊆ 𝑋 ) | |
| 6 | 5 | ex | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → ( 𝑡 ∈ 𝐿 → 𝑡 ⊆ 𝑋 ) ) |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → ( 𝑡 ∈ 𝐿 → 𝑡 ⊆ 𝑋 ) ) |
| 8 | mptexg | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ V ) | |
| 9 | rnexg | ⊢ ( ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ V → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ V ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ V ) |
| 11 | 2 10 | syl | ⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ V ) |
| 12 | unexg | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ V ) → ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ∈ V ) | |
| 13 | 1 11 12 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ∈ V ) |
| 14 | ssfii | ⊢ ( ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ∈ V → ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ⊆ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) | |
| 15 | 14 | unssbd | ⊢ ( ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ∈ V → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
| 16 | 13 15 | syl | ⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐿 ) → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
| 18 | eqid | ⊢ ( ◡ 𝐹 “ 𝑡 ) = ( ◡ 𝐹 “ 𝑡 ) | |
| 19 | imaeq2 | ⊢ ( 𝑥 = 𝑡 → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ 𝑡 ) ) | |
| 20 | 19 | rspceeqv | ⊢ ( ( 𝑡 ∈ 𝐿 ∧ ( ◡ 𝐹 “ 𝑡 ) = ( ◡ 𝐹 “ 𝑡 ) ) → ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 21 | 18 20 | mpan2 | ⊢ ( 𝑡 ∈ 𝐿 → ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 22 | 21 | adantl | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐿 ) → ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 23 | elfvdm | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝑌 ∈ dom fBas ) | |
| 24 | 1 23 | syl | ⊢ ( 𝜑 → 𝑌 ∈ dom fBas ) |
| 25 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝑡 ) ⊆ dom 𝐹 | |
| 26 | 25 3 | fssdm | ⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑡 ) ⊆ 𝑌 ) |
| 27 | 24 26 | ssexd | ⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑡 ) ∈ V ) |
| 28 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐿 ) → ( ◡ 𝐹 “ 𝑡 ) ∈ V ) |
| 29 | eqid | ⊢ ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) = ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) | |
| 30 | 29 | elrnmpt | ⊢ ( ( ◡ 𝐹 “ 𝑡 ) ∈ V → ( ( ◡ 𝐹 “ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 31 | 28 30 | syl | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐿 ) → ( ( ◡ 𝐹 “ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 32 | 22 31 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐿 ) → ( ◡ 𝐹 “ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 33 | 17 32 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐿 ) → ( ◡ 𝐹 “ 𝑡 ) ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
| 34 | ffun | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → Fun 𝐹 ) | |
| 35 | ssid | ⊢ ( ◡ 𝐹 “ 𝑡 ) ⊆ ( ◡ 𝐹 “ 𝑡 ) | |
| 36 | funimass2 | ⊢ ( ( Fun 𝐹 ∧ ( ◡ 𝐹 “ 𝑡 ) ⊆ ( ◡ 𝐹 “ 𝑡 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑡 ) ) ⊆ 𝑡 ) | |
| 37 | 34 35 36 | sylancl | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( 𝐹 “ ( ◡ 𝐹 “ 𝑡 ) ) ⊆ 𝑡 ) |
| 38 | 3 37 | syl | ⊢ ( 𝜑 → ( 𝐹 “ ( ◡ 𝐹 “ 𝑡 ) ) ⊆ 𝑡 ) |
| 39 | 38 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐿 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑡 ) ) ⊆ 𝑡 ) |
| 40 | imaeq2 | ⊢ ( 𝑠 = ( ◡ 𝐹 “ 𝑡 ) → ( 𝐹 “ 𝑠 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑡 ) ) ) | |
| 41 | 40 | sseq1d | ⊢ ( 𝑠 = ( ◡ 𝐹 “ 𝑡 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ↔ ( 𝐹 “ ( ◡ 𝐹 “ 𝑡 ) ) ⊆ 𝑡 ) ) |
| 42 | 41 | rspcev | ⊢ ( ( ( ◡ 𝐹 “ 𝑡 ) ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ∧ ( 𝐹 “ ( ◡ 𝐹 “ 𝑡 ) ) ⊆ 𝑡 ) → ∃ 𝑠 ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) |
| 43 | 33 39 42 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐿 ) → ∃ 𝑠 ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) |
| 44 | 43 | ex | ⊢ ( 𝜑 → ( 𝑡 ∈ 𝐿 → ∃ 𝑠 ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ) |
| 45 | 7 44 | jcad | ⊢ ( 𝜑 → ( 𝑡 ∈ 𝐿 → ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ) ) |
| 46 | elfiun | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ V ) → ( 𝑠 ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ↔ ( 𝑠 ∈ ( fi ‘ 𝐵 ) ∨ 𝑠 ∈ ( fi ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ∨ ∃ 𝑧 ∈ ( fi ‘ 𝐵 ) ∃ 𝑤 ∈ ( fi ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) 𝑠 = ( 𝑧 ∩ 𝑤 ) ) ) ) | |
| 47 | 1 11 46 | syl2anc | ⊢ ( 𝜑 → ( 𝑠 ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ↔ ( 𝑠 ∈ ( fi ‘ 𝐵 ) ∨ 𝑠 ∈ ( fi ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ∨ ∃ 𝑧 ∈ ( fi ‘ 𝐵 ) ∃ 𝑤 ∈ ( fi ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) 𝑠 = ( 𝑧 ∩ 𝑤 ) ) ) ) |
| 48 | 1 2 3 4 | fmfnfmlem1 | ⊢ ( 𝜑 → ( 𝑠 ∈ ( fi ‘ 𝐵 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |
| 49 | 1 2 3 4 | fmfnfmlem3 | ⊢ ( 𝜑 → ( fi ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) = ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 50 | 49 | eleq2d | ⊢ ( 𝜑 → ( 𝑠 ∈ ( fi ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ↔ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
| 51 | 29 | elrnmpt | ⊢ ( 𝑠 ∈ V → ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 52 | 51 | elv | ⊢ ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ) |
| 53 | 1 2 3 4 | fmfnfmlem2 | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |
| 54 | 52 53 | biimtrid | ⊢ ( 𝜑 → ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |
| 55 | 50 54 | sylbid | ⊢ ( 𝜑 → ( 𝑠 ∈ ( fi ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |
| 56 | 49 | eleq2d | ⊢ ( 𝜑 → ( 𝑤 ∈ ( fi ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ↔ 𝑤 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
| 57 | 29 | elrnmpt | ⊢ ( 𝑤 ∈ V → ( 𝑤 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑤 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 58 | 57 | elv | ⊢ ( 𝑤 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑤 = ( ◡ 𝐹 “ 𝑥 ) ) |
| 59 | 56 58 | bitrdi | ⊢ ( 𝜑 → ( 𝑤 ∈ ( fi ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑤 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 60 | 59 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( fi ‘ 𝐵 ) ) → ( 𝑤 ∈ ( fi ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑤 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 61 | fbssfi | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑧 ∈ ( fi ‘ 𝐵 ) ) → ∃ 𝑠 ∈ 𝐵 𝑠 ⊆ 𝑧 ) | |
| 62 | 1 61 | sylan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( fi ‘ 𝐵 ) ) → ∃ 𝑠 ∈ 𝐵 𝑠 ⊆ 𝑧 ) |
| 63 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) |
| 64 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) |
| 65 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ⊆ 𝐿 ) |
| 66 | filtop | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐿 ) | |
| 67 | 2 66 | syl | ⊢ ( 𝜑 → 𝑋 ∈ 𝐿 ) |
| 68 | 67 1 3 | 3jca | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐿 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ) |
| 69 | 68 | adantr | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → ( 𝑋 ∈ 𝐿 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ) |
| 70 | ssfg | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝐵 ⊆ ( 𝑌 filGen 𝐵 ) ) | |
| 71 | 1 70 | syl | ⊢ ( 𝜑 → 𝐵 ⊆ ( 𝑌 filGen 𝐵 ) ) |
| 72 | 71 | sselda | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → 𝑠 ∈ ( 𝑌 filGen 𝐵 ) ) |
| 73 | eqid | ⊢ ( 𝑌 filGen 𝐵 ) = ( 𝑌 filGen 𝐵 ) | |
| 74 | 73 | imaelfm | ⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑠 ∈ ( 𝑌 filGen 𝐵 ) ) → ( 𝐹 “ 𝑠 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ) |
| 75 | 69 72 74 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → ( 𝐹 “ 𝑠 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ) |
| 76 | 65 75 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → ( 𝐹 “ 𝑠 ) ∈ 𝐿 ) |
| 77 | 76 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) → ( 𝐹 “ 𝑠 ) ∈ 𝐿 ) |
| 78 | 64 77 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) → ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 “ 𝑠 ) ∈ 𝐿 ) ) |
| 79 | filin | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 “ 𝑠 ) ∈ 𝐿 ∧ 𝑥 ∈ 𝐿 ) → ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) ∈ 𝐿 ) | |
| 80 | 79 | 3expa | ⊢ ( ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 “ 𝑠 ) ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) → ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) ∈ 𝐿 ) |
| 81 | 78 80 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) → ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) ∈ 𝐿 ) |
| 82 | 81 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) ∈ 𝐿 ) |
| 83 | simprr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → 𝑡 ⊆ 𝑋 ) | |
| 84 | elin | ⊢ ( 𝑤 ∈ ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) ↔ ( 𝑤 ∈ ( 𝐹 “ 𝑠 ) ∧ 𝑤 ∈ 𝑥 ) ) | |
| 85 | 3 34 | syl | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 86 | fvelima | ⊢ ( ( Fun 𝐹 ∧ 𝑤 ∈ ( 𝐹 “ 𝑠 ) ) → ∃ 𝑦 ∈ 𝑠 ( 𝐹 ‘ 𝑦 ) = 𝑤 ) | |
| 87 | 86 | ex | ⊢ ( Fun 𝐹 → ( 𝑤 ∈ ( 𝐹 “ 𝑠 ) → ∃ 𝑦 ∈ 𝑠 ( 𝐹 ‘ 𝑦 ) = 𝑤 ) ) |
| 88 | 85 87 | syl | ⊢ ( 𝜑 → ( 𝑤 ∈ ( 𝐹 “ 𝑠 ) → ∃ 𝑦 ∈ 𝑠 ( 𝐹 ‘ 𝑦 ) = 𝑤 ) ) |
| 89 | 88 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) ∧ 𝑡 ⊆ 𝑋 ) → ( 𝑤 ∈ ( 𝐹 “ 𝑠 ) → ∃ 𝑦 ∈ 𝑠 ( 𝐹 ‘ 𝑦 ) = 𝑤 ) ) |
| 90 | 85 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( 𝑡 ⊆ 𝑋 ∧ ( 𝑦 ∈ 𝑠 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) ) ) → Fun 𝐹 ) |
| 91 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) → 𝑠 ⊆ 𝑧 ) | |
| 92 | simprl | ⊢ ( ( 𝑡 ⊆ 𝑋 ∧ ( 𝑦 ∈ 𝑠 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) ) → 𝑦 ∈ 𝑠 ) | |
| 93 | ssel2 | ⊢ ( ( 𝑠 ⊆ 𝑧 ∧ 𝑦 ∈ 𝑠 ) → 𝑦 ∈ 𝑧 ) | |
| 94 | 91 92 93 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( 𝑡 ⊆ 𝑋 ∧ ( 𝑦 ∈ 𝑠 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) ) ) → 𝑦 ∈ 𝑧 ) |
| 95 | 85 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑦 ∈ 𝑠 ) → Fun 𝐹 ) |
| 96 | fbelss | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑠 ∈ 𝐵 ) → 𝑠 ⊆ 𝑌 ) | |
| 97 | 1 96 | sylan | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → 𝑠 ⊆ 𝑌 ) |
| 98 | 3 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝑌 ) |
| 99 | 98 | adantr | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → dom 𝐹 = 𝑌 ) |
| 100 | 97 99 | sseqtrrd | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → 𝑠 ⊆ dom 𝐹 ) |
| 101 | 100 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) → 𝑠 ⊆ dom 𝐹 ) |
| 102 | 101 | sselda | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑦 ∈ 𝑠 ) → 𝑦 ∈ dom 𝐹 ) |
| 103 | fvimacnv | ⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ↔ 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) ) ) | |
| 104 | 95 102 103 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑦 ∈ 𝑠 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ↔ 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 105 | 104 | biimpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑦 ∈ 𝑠 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 → 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 106 | 105 | impr | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝑠 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) ) → 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) ) |
| 107 | 106 | ad2ant2rl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( 𝑡 ⊆ 𝑋 ∧ ( 𝑦 ∈ 𝑠 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) ) ) → 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) ) |
| 108 | 94 107 | elind | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( 𝑡 ⊆ 𝑋 ∧ ( 𝑦 ∈ 𝑠 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) ) ) → 𝑦 ∈ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 109 | inss2 | ⊢ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( ◡ 𝐹 “ 𝑥 ) | |
| 110 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝑥 ) ⊆ dom 𝐹 | |
| 111 | 109 110 | sstri | ⊢ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ dom 𝐹 |
| 112 | funfvima2 | ⊢ ( ( Fun 𝐹 ∧ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ dom 𝐹 ) → ( 𝑦 ∈ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) | |
| 113 | 111 112 | mpan2 | ⊢ ( Fun 𝐹 → ( 𝑦 ∈ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
| 114 | 90 108 113 | sylc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( 𝑡 ⊆ 𝑋 ∧ ( 𝑦 ∈ 𝑠 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
| 115 | 114 | anassrs | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) ∧ 𝑡 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ 𝑠 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
| 116 | 115 | expr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) ∧ 𝑡 ⊆ 𝑋 ) ∧ 𝑦 ∈ 𝑠 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
| 117 | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ↔ 𝑤 ∈ 𝑥 ) ) | |
| 118 | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ↔ 𝑤 ∈ ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) | |
| 119 | 117 118 | imbi12d | ⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ↔ ( 𝑤 ∈ 𝑥 → 𝑤 ∈ ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) |
| 120 | 116 119 | syl5ibcom | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) ∧ 𝑡 ⊆ 𝑋 ) ∧ 𝑦 ∈ 𝑠 ) → ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( 𝑤 ∈ 𝑥 → 𝑤 ∈ ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) |
| 121 | 120 | rexlimdva | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) ∧ 𝑡 ⊆ 𝑋 ) → ( ∃ 𝑦 ∈ 𝑠 ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( 𝑤 ∈ 𝑥 → 𝑤 ∈ ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) |
| 122 | 89 121 | syld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) ∧ 𝑡 ⊆ 𝑋 ) → ( 𝑤 ∈ ( 𝐹 “ 𝑠 ) → ( 𝑤 ∈ 𝑥 → 𝑤 ∈ ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) |
| 123 | 122 | impd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) ∧ 𝑡 ⊆ 𝑋 ) → ( ( 𝑤 ∈ ( 𝐹 “ 𝑠 ) ∧ 𝑤 ∈ 𝑥 ) → 𝑤 ∈ ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
| 124 | 84 123 | biimtrid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) ∧ 𝑡 ⊆ 𝑋 ) → ( 𝑤 ∈ ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) → 𝑤 ∈ ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
| 125 | 124 | adantrl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝑤 ∈ ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) → 𝑤 ∈ ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
| 126 | 125 | ssrdv | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) ⊆ ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
| 127 | simprl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ⊆ 𝑡 ) | |
| 128 | 126 127 | sstrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) ⊆ 𝑡 ) |
| 129 | filss | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ ( ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) ∈ 𝐿 ∧ 𝑡 ⊆ 𝑋 ∧ ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) ⊆ 𝑡 ) ) → 𝑡 ∈ 𝐿 ) | |
| 130 | 63 82 83 128 129 | syl13anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → 𝑡 ∈ 𝐿 ) |
| 131 | 130 | exp32 | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) → ( ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) |
| 132 | ineq2 | ⊢ ( 𝑤 = ( ◡ 𝐹 “ 𝑥 ) → ( 𝑧 ∩ 𝑤 ) = ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) | |
| 133 | 132 | imaeq2d | ⊢ ( 𝑤 = ( ◡ 𝐹 “ 𝑥 ) → ( 𝐹 “ ( 𝑧 ∩ 𝑤 ) ) = ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
| 134 | 133 | sseq1d | ⊢ ( 𝑤 = ( ◡ 𝐹 “ 𝑥 ) → ( ( 𝐹 “ ( 𝑧 ∩ 𝑤 ) ) ⊆ 𝑡 ↔ ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ⊆ 𝑡 ) ) |
| 135 | 134 | imbi1d | ⊢ ( 𝑤 = ( ◡ 𝐹 “ 𝑥 ) → ( ( ( 𝐹 “ ( 𝑧 ∩ 𝑤 ) ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ↔ ( ( 𝐹 “ ( 𝑧 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |
| 136 | 131 135 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) ∧ 𝑥 ∈ 𝐿 ) → ( 𝑤 = ( ◡ 𝐹 “ 𝑥 ) → ( ( 𝐹 “ ( 𝑧 ∩ 𝑤 ) ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |
| 137 | 136 | rexlimdva | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧 ) ) → ( ∃ 𝑥 ∈ 𝐿 𝑤 = ( ◡ 𝐹 “ 𝑥 ) → ( ( 𝐹 “ ( 𝑧 ∩ 𝑤 ) ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |
| 138 | 137 | rexlimdvaa | ⊢ ( 𝜑 → ( ∃ 𝑠 ∈ 𝐵 𝑠 ⊆ 𝑧 → ( ∃ 𝑥 ∈ 𝐿 𝑤 = ( ◡ 𝐹 “ 𝑥 ) → ( ( 𝐹 “ ( 𝑧 ∩ 𝑤 ) ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) ) |
| 139 | 138 | imp | ⊢ ( ( 𝜑 ∧ ∃ 𝑠 ∈ 𝐵 𝑠 ⊆ 𝑧 ) → ( ∃ 𝑥 ∈ 𝐿 𝑤 = ( ◡ 𝐹 “ 𝑥 ) → ( ( 𝐹 “ ( 𝑧 ∩ 𝑤 ) ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |
| 140 | 62 139 | syldan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( fi ‘ 𝐵 ) ) → ( ∃ 𝑥 ∈ 𝐿 𝑤 = ( ◡ 𝐹 “ 𝑥 ) → ( ( 𝐹 “ ( 𝑧 ∩ 𝑤 ) ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |
| 141 | 60 140 | sylbid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( fi ‘ 𝐵 ) ) → ( 𝑤 ∈ ( fi ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) → ( ( 𝐹 “ ( 𝑧 ∩ 𝑤 ) ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |
| 142 | 141 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( fi ‘ 𝐵 ) ∧ 𝑤 ∈ ( fi ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) → ( ( 𝐹 “ ( 𝑧 ∩ 𝑤 ) ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) |
| 143 | imaeq2 | ⊢ ( 𝑠 = ( 𝑧 ∩ 𝑤 ) → ( 𝐹 “ 𝑠 ) = ( 𝐹 “ ( 𝑧 ∩ 𝑤 ) ) ) | |
| 144 | 143 | sseq1d | ⊢ ( 𝑠 = ( 𝑧 ∩ 𝑤 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ↔ ( 𝐹 “ ( 𝑧 ∩ 𝑤 ) ) ⊆ 𝑡 ) ) |
| 145 | 144 | imbi1d | ⊢ ( 𝑠 = ( 𝑧 ∩ 𝑤 ) → ( ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ↔ ( ( 𝐹 “ ( 𝑧 ∩ 𝑤 ) ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |
| 146 | 142 145 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( fi ‘ 𝐵 ) ∧ 𝑤 ∈ ( fi ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) → ( 𝑠 = ( 𝑧 ∩ 𝑤 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |
| 147 | 146 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( fi ‘ 𝐵 ) ∃ 𝑤 ∈ ( fi ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) 𝑠 = ( 𝑧 ∩ 𝑤 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |
| 148 | 48 55 147 | 3jaod | ⊢ ( 𝜑 → ( ( 𝑠 ∈ ( fi ‘ 𝐵 ) ∨ 𝑠 ∈ ( fi ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ∨ ∃ 𝑧 ∈ ( fi ‘ 𝐵 ) ∃ 𝑤 ∈ ( fi ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) 𝑠 = ( 𝑧 ∩ 𝑤 ) ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |
| 149 | 47 148 | sylbid | ⊢ ( 𝜑 → ( 𝑠 ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |
| 150 | 149 | rexlimdv | ⊢ ( 𝜑 → ( ∃ 𝑠 ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) |
| 151 | 150 | impcomd | ⊢ ( 𝜑 → ( ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) → 𝑡 ∈ 𝐿 ) ) |
| 152 | 45 151 | impbid | ⊢ ( 𝜑 → ( 𝑡 ∈ 𝐿 ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ) ) |