This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter finer than an image filter is an image filter of the same function. (Contributed by Jeff Hankins, 13-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmfnfm.b | ⊢ ( 𝜑 → 𝐵 ∈ ( fBas ‘ 𝑌 ) ) | |
| fmfnfm.l | ⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) | ||
| fmfnfm.f | ⊢ ( 𝜑 → 𝐹 : 𝑌 ⟶ 𝑋 ) | ||
| fmfnfm.fm | ⊢ ( 𝜑 → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ⊆ 𝐿 ) | ||
| Assertion | fmfnfm | ⊢ ( 𝜑 → ∃ 𝑓 ∈ ( Fil ‘ 𝑌 ) ( 𝐵 ⊆ 𝑓 ∧ 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmfnfm.b | ⊢ ( 𝜑 → 𝐵 ∈ ( fBas ‘ 𝑌 ) ) | |
| 2 | fmfnfm.l | ⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) | |
| 3 | fmfnfm.f | ⊢ ( 𝜑 → 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 4 | fmfnfm.fm | ⊢ ( 𝜑 → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ⊆ 𝐿 ) | |
| 5 | fbsspw | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝐵 ⊆ 𝒫 𝑌 ) | |
| 6 | 1 5 | syl | ⊢ ( 𝜑 → 𝐵 ⊆ 𝒫 𝑌 ) |
| 7 | elfvdm | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝑌 ∈ dom fBas ) | |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → 𝑌 ∈ dom fBas ) |
| 9 | ffn | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → 𝐹 Fn 𝑌 ) | |
| 10 | dffn4 | ⊢ ( 𝐹 Fn 𝑌 ↔ 𝐹 : 𝑌 –onto→ ran 𝐹 ) | |
| 11 | 9 10 | sylib | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → 𝐹 : 𝑌 –onto→ ran 𝐹 ) |
| 12 | foima | ⊢ ( 𝐹 : 𝑌 –onto→ ran 𝐹 → ( 𝐹 “ 𝑌 ) = ran 𝐹 ) | |
| 13 | 3 11 12 | 3syl | ⊢ ( 𝜑 → ( 𝐹 “ 𝑌 ) = ran 𝐹 ) |
| 14 | filtop | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐿 ) | |
| 15 | 2 14 | syl | ⊢ ( 𝜑 → 𝑋 ∈ 𝐿 ) |
| 16 | fgcl | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → ( 𝑌 filGen 𝐵 ) ∈ ( Fil ‘ 𝑌 ) ) | |
| 17 | filtop | ⊢ ( ( 𝑌 filGen 𝐵 ) ∈ ( Fil ‘ 𝑌 ) → 𝑌 ∈ ( 𝑌 filGen 𝐵 ) ) | |
| 18 | 1 16 17 | 3syl | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑌 filGen 𝐵 ) ) |
| 19 | eqid | ⊢ ( 𝑌 filGen 𝐵 ) = ( 𝑌 filGen 𝐵 ) | |
| 20 | 19 | imaelfm | ⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑌 ∈ ( 𝑌 filGen 𝐵 ) ) → ( 𝐹 “ 𝑌 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ) |
| 21 | 15 1 3 18 20 | syl31anc | ⊢ ( 𝜑 → ( 𝐹 “ 𝑌 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ) |
| 22 | 13 21 | eqeltrrd | ⊢ ( 𝜑 → ran 𝐹 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ) |
| 23 | 4 22 | sseldd | ⊢ ( 𝜑 → ran 𝐹 ∈ 𝐿 ) |
| 24 | rnelfmlem | ⊢ ( ( ( 𝑌 ∈ dom fBas ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) ) | |
| 25 | 8 2 3 23 24 | syl31anc | ⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) ) |
| 26 | fbsspw | ⊢ ( ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝒫 𝑌 ) | |
| 27 | 25 26 | syl | ⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝒫 𝑌 ) |
| 28 | 6 27 | unssd | ⊢ ( 𝜑 → ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ⊆ 𝒫 𝑌 ) |
| 29 | ssun1 | ⊢ 𝐵 ⊆ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) | |
| 30 | fbasne0 | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝐵 ≠ ∅ ) | |
| 31 | 1 30 | syl | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 32 | ssn0 | ⊢ ( ( 𝐵 ⊆ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ∧ 𝐵 ≠ ∅ ) → ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ≠ ∅ ) | |
| 33 | 29 31 32 | sylancr | ⊢ ( 𝜑 → ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ≠ ∅ ) |
| 34 | eqid | ⊢ ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) = ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) | |
| 35 | 34 | elrnmpt | ⊢ ( 𝑡 ∈ V → ( 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑡 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 36 | 35 | elv | ⊢ ( 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑡 = ( ◡ 𝐹 “ 𝑥 ) ) |
| 37 | 0nelfil | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → ¬ ∅ ∈ 𝐿 ) | |
| 38 | 2 37 | syl | ⊢ ( 𝜑 → ¬ ∅ ∈ 𝐿 ) |
| 39 | 38 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ¬ ∅ ∈ 𝐿 ) |
| 40 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) |
| 41 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ⊆ 𝐿 ) |
| 42 | 15 1 3 | 3jca | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐿 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ) |
| 43 | 42 | adantr | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → ( 𝑋 ∈ 𝐿 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ) |
| 44 | ssfg | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝐵 ⊆ ( 𝑌 filGen 𝐵 ) ) | |
| 45 | 1 44 | syl | ⊢ ( 𝜑 → 𝐵 ⊆ ( 𝑌 filGen 𝐵 ) ) |
| 46 | 45 | sselda | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → 𝑠 ∈ ( 𝑌 filGen 𝐵 ) ) |
| 47 | 19 | imaelfm | ⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑠 ∈ ( 𝑌 filGen 𝐵 ) ) → ( 𝐹 “ 𝑠 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ) |
| 48 | 43 46 47 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → ( 𝐹 “ 𝑠 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ) |
| 49 | 41 48 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → ( 𝐹 “ 𝑠 ) ∈ 𝐿 ) |
| 50 | 40 49 | jca | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 “ 𝑠 ) ∈ 𝐿 ) ) |
| 51 | filin | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 “ 𝑠 ) ∈ 𝐿 ∧ 𝑥 ∈ 𝐿 ) → ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) ∈ 𝐿 ) | |
| 52 | 51 | 3expa | ⊢ ( ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 “ 𝑠 ) ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) → ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) ∈ 𝐿 ) |
| 53 | 50 52 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) ∈ 𝐿 ) |
| 54 | eleq1 | ⊢ ( ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) = ∅ → ( ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) ∈ 𝐿 ↔ ∅ ∈ 𝐿 ) ) | |
| 55 | 53 54 | syl5ibcom | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) = ∅ → ∅ ∈ 𝐿 ) ) |
| 56 | 39 55 | mtod | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ¬ ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) = ∅ ) |
| 57 | neq0 | ⊢ ( ¬ ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) = ∅ ↔ ∃ 𝑡 𝑡 ∈ ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) ) | |
| 58 | elin | ⊢ ( 𝑡 ∈ ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) ↔ ( 𝑡 ∈ ( 𝐹 “ 𝑠 ) ∧ 𝑡 ∈ 𝑥 ) ) | |
| 59 | ffun | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → Fun 𝐹 ) | |
| 60 | fvelima | ⊢ ( ( Fun 𝐹 ∧ 𝑡 ∈ ( 𝐹 “ 𝑠 ) ) → ∃ 𝑦 ∈ 𝑠 ( 𝐹 ‘ 𝑦 ) = 𝑡 ) | |
| 61 | 60 | ex | ⊢ ( Fun 𝐹 → ( 𝑡 ∈ ( 𝐹 “ 𝑠 ) → ∃ 𝑦 ∈ 𝑠 ( 𝐹 ‘ 𝑦 ) = 𝑡 ) ) |
| 62 | 3 59 61 | 3syl | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐹 “ 𝑠 ) → ∃ 𝑦 ∈ 𝑠 ( 𝐹 ‘ 𝑦 ) = 𝑡 ) ) |
| 63 | 62 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( 𝑡 ∈ ( 𝐹 “ 𝑠 ) → ∃ 𝑦 ∈ 𝑠 ( 𝐹 ‘ 𝑦 ) = 𝑡 ) ) |
| 64 | 3 59 | syl | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 65 | 64 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) ∧ 𝑦 ∈ 𝑠 ) → Fun 𝐹 ) |
| 66 | fbelss | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑠 ∈ 𝐵 ) → 𝑠 ⊆ 𝑌 ) | |
| 67 | 1 66 | sylan | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → 𝑠 ⊆ 𝑌 ) |
| 68 | 3 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝑌 ) |
| 69 | 68 | adantr | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → dom 𝐹 = 𝑌 ) |
| 70 | 67 69 | sseqtrrd | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → 𝑠 ⊆ dom 𝐹 ) |
| 71 | 70 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → 𝑠 ⊆ dom 𝐹 ) |
| 72 | 71 | sselda | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) ∧ 𝑦 ∈ 𝑠 ) → 𝑦 ∈ dom 𝐹 ) |
| 73 | fvimacnv | ⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ↔ 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) ) ) | |
| 74 | 65 72 73 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) ∧ 𝑦 ∈ 𝑠 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ↔ 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 75 | inelcm | ⊢ ( ( 𝑦 ∈ 𝑠 ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) ) → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) | |
| 76 | 75 | ex | ⊢ ( 𝑦 ∈ 𝑠 → ( 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) |
| 77 | 76 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) ∧ 𝑦 ∈ 𝑠 ) → ( 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) |
| 78 | 74 77 | sylbid | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) ∧ 𝑦 ∈ 𝑠 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) |
| 79 | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑡 → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ↔ 𝑡 ∈ 𝑥 ) ) | |
| 80 | 79 | imbi1d | ⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑡 → ( ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ↔ ( 𝑡 ∈ 𝑥 → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) ) |
| 81 | 78 80 | syl5ibcom | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) ∧ 𝑦 ∈ 𝑠 ) → ( ( 𝐹 ‘ 𝑦 ) = 𝑡 → ( 𝑡 ∈ 𝑥 → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) ) |
| 82 | 81 | rexlimdva | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( ∃ 𝑦 ∈ 𝑠 ( 𝐹 ‘ 𝑦 ) = 𝑡 → ( 𝑡 ∈ 𝑥 → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) ) |
| 83 | 63 82 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( 𝑡 ∈ ( 𝐹 “ 𝑠 ) → ( 𝑡 ∈ 𝑥 → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) ) |
| 84 | 83 | impd | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( ( 𝑡 ∈ ( 𝐹 “ 𝑠 ) ∧ 𝑡 ∈ 𝑥 ) → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) |
| 85 | 58 84 | biimtrid | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( 𝑡 ∈ ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) |
| 86 | 85 | exlimdv | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( ∃ 𝑡 𝑡 ∈ ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) |
| 87 | 57 86 | biimtrid | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( ¬ ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) = ∅ → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) |
| 88 | 56 87 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) |
| 89 | ineq2 | ⊢ ( 𝑡 = ( ◡ 𝐹 “ 𝑥 ) → ( 𝑠 ∩ 𝑡 ) = ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) | |
| 90 | 89 | neeq1d | ⊢ ( 𝑡 = ( ◡ 𝐹 “ 𝑥 ) → ( ( 𝑠 ∩ 𝑡 ) ≠ ∅ ↔ ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) |
| 91 | 88 90 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( 𝑡 = ( ◡ 𝐹 “ 𝑥 ) → ( 𝑠 ∩ 𝑡 ) ≠ ∅ ) ) |
| 92 | 91 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ 𝐿 𝑡 = ( ◡ 𝐹 “ 𝑥 ) → ( 𝑠 ∩ 𝑡 ) ≠ ∅ ) ) |
| 93 | 36 92 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → ( 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) → ( 𝑠 ∩ 𝑡 ) ≠ ∅ ) ) |
| 94 | 93 | expimpd | ⊢ ( 𝜑 → ( ( 𝑠 ∈ 𝐵 ∧ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) → ( 𝑠 ∩ 𝑡 ) ≠ ∅ ) ) |
| 95 | 94 | ralrimivv | ⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝐵 ∀ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝑠 ∩ 𝑡 ) ≠ ∅ ) |
| 96 | fbunfip | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) ) → ( ¬ ∅ ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ↔ ∀ 𝑠 ∈ 𝐵 ∀ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝑠 ∩ 𝑡 ) ≠ ∅ ) ) | |
| 97 | 1 25 96 | syl2anc | ⊢ ( 𝜑 → ( ¬ ∅ ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ↔ ∀ 𝑠 ∈ 𝐵 ∀ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝑠 ∩ 𝑡 ) ≠ ∅ ) ) |
| 98 | 95 97 | mpbird | ⊢ ( 𝜑 → ¬ ∅ ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
| 99 | fsubbas | ⊢ ( 𝑌 ∈ dom fBas → ( ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ∈ ( fBas ‘ 𝑌 ) ↔ ( ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ⊆ 𝒫 𝑌 ∧ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) ) | |
| 100 | 1 7 99 | 3syl | ⊢ ( 𝜑 → ( ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ∈ ( fBas ‘ 𝑌 ) ↔ ( ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ⊆ 𝒫 𝑌 ∧ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) ) |
| 101 | 28 33 98 100 | mpbir3and | ⊢ ( 𝜑 → ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ∈ ( fBas ‘ 𝑌 ) ) |
| 102 | fgcl | ⊢ ( ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ∈ ( fBas ‘ 𝑌 ) → ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ∈ ( Fil ‘ 𝑌 ) ) | |
| 103 | 101 102 | syl | ⊢ ( 𝜑 → ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ∈ ( Fil ‘ 𝑌 ) ) |
| 104 | unexg | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) ) → ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ∈ V ) | |
| 105 | 1 25 104 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ∈ V ) |
| 106 | ssfii | ⊢ ( ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ∈ V → ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ⊆ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) | |
| 107 | 105 106 | syl | ⊢ ( 𝜑 → ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ⊆ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
| 108 | 107 | unssad | ⊢ ( 𝜑 → 𝐵 ⊆ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
| 109 | ssfg | ⊢ ( ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ∈ ( fBas ‘ 𝑌 ) → ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ⊆ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) | |
| 110 | 101 109 | syl | ⊢ ( 𝜑 → ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ⊆ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) |
| 111 | 108 110 | sstrd | ⊢ ( 𝜑 → 𝐵 ⊆ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) |
| 112 | 1 2 3 4 | fmfnfmlem4 | ⊢ ( 𝜑 → ( 𝑡 ∈ 𝐿 ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ) ) |
| 113 | elfm | ⊢ ( ( 𝑋 ∈ 𝐿 ∧ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑡 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ) ) | |
| 114 | 15 101 3 113 | syl3anc | ⊢ ( 𝜑 → ( 𝑡 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ) ) |
| 115 | 112 114 | bitr4d | ⊢ ( 𝜑 → ( 𝑡 ∈ 𝐿 ↔ 𝑡 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) ) |
| 116 | 115 | eqrdv | ⊢ ( 𝜑 → 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) |
| 117 | eqid | ⊢ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) = ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) | |
| 118 | 117 | fmfg | ⊢ ( ( 𝑋 ∈ 𝐿 ∧ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) = ( ( 𝑋 FilMap 𝐹 ) ‘ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) ) |
| 119 | 15 101 3 118 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑋 FilMap 𝐹 ) ‘ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) = ( ( 𝑋 FilMap 𝐹 ) ‘ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) ) |
| 120 | 116 119 | eqtrd | ⊢ ( 𝜑 → 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) ) |
| 121 | sseq2 | ⊢ ( 𝑓 = ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) → ( 𝐵 ⊆ 𝑓 ↔ 𝐵 ⊆ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) ) | |
| 122 | fveq2 | ⊢ ( 𝑓 = ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑓 ) = ( ( 𝑋 FilMap 𝐹 ) ‘ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) ) | |
| 123 | 122 | eqeq2d | ⊢ ( 𝑓 = ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) → ( 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑓 ) ↔ 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) ) ) |
| 124 | 121 123 | anbi12d | ⊢ ( 𝑓 = ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) → ( ( 𝐵 ⊆ 𝑓 ∧ 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑓 ) ) ↔ ( 𝐵 ⊆ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ∧ 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) ) ) ) |
| 125 | 124 | rspcev | ⊢ ( ( ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ∈ ( Fil ‘ 𝑌 ) ∧ ( 𝐵 ⊆ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ∧ 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) ) ) → ∃ 𝑓 ∈ ( Fil ‘ 𝑌 ) ( 𝐵 ⊆ 𝑓 ∧ 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑓 ) ) ) |
| 126 | 103 111 120 125 | syl12anc | ⊢ ( 𝜑 → ∃ 𝑓 ∈ ( Fil ‘ 𝑌 ) ( 𝐵 ⊆ 𝑓 ∧ 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑓 ) ) ) |