This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fmfnfm . (Contributed by Jeff Hankins, 19-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmfnfm.b | ⊢ ( 𝜑 → 𝐵 ∈ ( fBas ‘ 𝑌 ) ) | |
| fmfnfm.l | ⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) | ||
| fmfnfm.f | ⊢ ( 𝜑 → 𝐹 : 𝑌 ⟶ 𝑋 ) | ||
| fmfnfm.fm | ⊢ ( 𝜑 → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ⊆ 𝐿 ) | ||
| Assertion | fmfnfmlem3 | ⊢ ( 𝜑 → ( fi ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) = ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmfnfm.b | ⊢ ( 𝜑 → 𝐵 ∈ ( fBas ‘ 𝑌 ) ) | |
| 2 | fmfnfm.l | ⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) | |
| 3 | fmfnfm.f | ⊢ ( 𝜑 → 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 4 | fmfnfm.fm | ⊢ ( 𝜑 → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ⊆ 𝐿 ) | |
| 5 | filin | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿 ) → ( 𝑦 ∩ 𝑧 ) ∈ 𝐿 ) | |
| 6 | 5 | 3expb | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿 ) ) → ( 𝑦 ∩ 𝑧 ) ∈ 𝐿 ) |
| 7 | 2 6 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿 ) ) → ( 𝑦 ∩ 𝑧 ) ∈ 𝐿 ) |
| 8 | ffun | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → Fun 𝐹 ) | |
| 9 | funcnvcnv | ⊢ ( Fun 𝐹 → Fun ◡ ◡ 𝐹 ) | |
| 10 | imain | ⊢ ( Fun ◡ ◡ 𝐹 → ( ◡ 𝐹 “ ( 𝑦 ∩ 𝑧 ) ) = ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑧 ) ) ) | |
| 11 | 10 | eqcomd | ⊢ ( Fun ◡ ◡ 𝐹 → ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑧 ) ) = ( ◡ 𝐹 “ ( 𝑦 ∩ 𝑧 ) ) ) |
| 12 | 3 8 9 11 | 4syl | ⊢ ( 𝜑 → ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑧 ) ) = ( ◡ 𝐹 “ ( 𝑦 ∩ 𝑧 ) ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿 ) ) → ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑧 ) ) = ( ◡ 𝐹 “ ( 𝑦 ∩ 𝑧 ) ) ) |
| 14 | imaeq2 | ⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ ( 𝑦 ∩ 𝑧 ) ) ) | |
| 15 | 14 | rspceeqv | ⊢ ( ( ( 𝑦 ∩ 𝑧 ) ∈ 𝐿 ∧ ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑧 ) ) = ( ◡ 𝐹 “ ( 𝑦 ∩ 𝑧 ) ) ) → ∃ 𝑥 ∈ 𝐿 ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑧 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 16 | 7 13 15 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿 ) ) → ∃ 𝑥 ∈ 𝐿 ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑧 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 17 | ineq12 | ⊢ ( ( 𝑠 = ( ◡ 𝐹 “ 𝑦 ) ∧ 𝑡 = ( ◡ 𝐹 “ 𝑧 ) ) → ( 𝑠 ∩ 𝑡 ) = ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑧 ) ) ) | |
| 18 | 17 | eqeq1d | ⊢ ( ( 𝑠 = ( ◡ 𝐹 “ 𝑦 ) ∧ 𝑡 = ( ◡ 𝐹 “ 𝑧 ) ) → ( ( 𝑠 ∩ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ↔ ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑧 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 19 | 18 | rexbidv | ⊢ ( ( 𝑠 = ( ◡ 𝐹 “ 𝑦 ) ∧ 𝑡 = ( ◡ 𝐹 “ 𝑧 ) ) → ( ∃ 𝑥 ∈ 𝐿 ( 𝑠 ∩ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐿 ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑧 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 20 | 16 19 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿 ) ) → ( ( 𝑠 = ( ◡ 𝐹 “ 𝑦 ) ∧ 𝑡 = ( ◡ 𝐹 “ 𝑧 ) ) → ∃ 𝑥 ∈ 𝐿 ( 𝑠 ∩ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 21 | 20 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐿 ∃ 𝑧 ∈ 𝐿 ( 𝑠 = ( ◡ 𝐹 “ 𝑦 ) ∧ 𝑡 = ( ◡ 𝐹 “ 𝑧 ) ) → ∃ 𝑥 ∈ 𝐿 ( 𝑠 ∩ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 22 | imaeq2 | ⊢ ( 𝑥 = 𝑦 → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ 𝑦 ) ) | |
| 23 | 22 | eqeq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ↔ 𝑠 = ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 24 | 23 | cbvrexvw | ⊢ ( ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ↔ ∃ 𝑦 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑦 ) ) |
| 25 | imaeq2 | ⊢ ( 𝑥 = 𝑧 → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ 𝑧 ) ) | |
| 26 | 25 | eqeq2d | ⊢ ( 𝑥 = 𝑧 → ( 𝑡 = ( ◡ 𝐹 “ 𝑥 ) ↔ 𝑡 = ( ◡ 𝐹 “ 𝑧 ) ) ) |
| 27 | 26 | cbvrexvw | ⊢ ( ∃ 𝑥 ∈ 𝐿 𝑡 = ( ◡ 𝐹 “ 𝑥 ) ↔ ∃ 𝑧 ∈ 𝐿 𝑡 = ( ◡ 𝐹 “ 𝑧 ) ) |
| 28 | 24 27 | anbi12i | ⊢ ( ( ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ∧ ∃ 𝑥 ∈ 𝐿 𝑡 = ( ◡ 𝐹 “ 𝑥 ) ) ↔ ( ∃ 𝑦 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑦 ) ∧ ∃ 𝑧 ∈ 𝐿 𝑡 = ( ◡ 𝐹 “ 𝑧 ) ) ) |
| 29 | eqid | ⊢ ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) = ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) | |
| 30 | 29 | elrnmpt | ⊢ ( 𝑠 ∈ V → ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 31 | 30 | elv | ⊢ ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ) |
| 32 | 29 | elrnmpt | ⊢ ( 𝑡 ∈ V → ( 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑡 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 33 | 32 | elv | ⊢ ( 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑡 = ( ◡ 𝐹 “ 𝑥 ) ) |
| 34 | 31 33 | anbi12i | ⊢ ( ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ↔ ( ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ∧ ∃ 𝑥 ∈ 𝐿 𝑡 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 35 | reeanv | ⊢ ( ∃ 𝑦 ∈ 𝐿 ∃ 𝑧 ∈ 𝐿 ( 𝑠 = ( ◡ 𝐹 “ 𝑦 ) ∧ 𝑡 = ( ◡ 𝐹 “ 𝑧 ) ) ↔ ( ∃ 𝑦 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑦 ) ∧ ∃ 𝑧 ∈ 𝐿 𝑡 = ( ◡ 𝐹 “ 𝑧 ) ) ) | |
| 36 | 28 34 35 | 3bitr4i | ⊢ ( ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ↔ ∃ 𝑦 ∈ 𝐿 ∃ 𝑧 ∈ 𝐿 ( 𝑠 = ( ◡ 𝐹 “ 𝑦 ) ∧ 𝑡 = ( ◡ 𝐹 “ 𝑧 ) ) ) |
| 37 | vex | ⊢ 𝑠 ∈ V | |
| 38 | 37 | inex1 | ⊢ ( 𝑠 ∩ 𝑡 ) ∈ V |
| 39 | 29 | elrnmpt | ⊢ ( ( 𝑠 ∩ 𝑡 ) ∈ V → ( ( 𝑠 ∩ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 ( 𝑠 ∩ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 40 | 38 39 | ax-mp | ⊢ ( ( 𝑠 ∩ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 ( 𝑠 ∩ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 41 | 21 36 40 | 3imtr4g | ⊢ ( 𝜑 → ( ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) → ( 𝑠 ∩ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
| 42 | 41 | ralrimivv | ⊢ ( 𝜑 → ∀ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∀ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝑠 ∩ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 43 | mptexg | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ V ) | |
| 44 | rnexg | ⊢ ( ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ V → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ V ) | |
| 45 | inficl | ⊢ ( ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ V → ( ∀ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∀ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝑠 ∩ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ( fi ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) = ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) | |
| 46 | 2 43 44 45 | 4syl | ⊢ ( 𝜑 → ( ∀ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∀ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝑠 ∩ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ( fi ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) = ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
| 47 | 42 46 | mpbid | ⊢ ( 𝜑 → ( fi ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) = ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) |