This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fmfnfm . (Contributed by Jeff Hankins, 19-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmfnfm.b | ⊢ ( 𝜑 → 𝐵 ∈ ( fBas ‘ 𝑌 ) ) | |
| fmfnfm.l | ⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) | ||
| fmfnfm.f | ⊢ ( 𝜑 → 𝐹 : 𝑌 ⟶ 𝑋 ) | ||
| fmfnfm.fm | ⊢ ( 𝜑 → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ⊆ 𝐿 ) | ||
| Assertion | fmfnfmlem2 | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmfnfm.b | ⊢ ( 𝜑 → 𝐵 ∈ ( fBas ‘ 𝑌 ) ) | |
| 2 | fmfnfm.l | ⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) | |
| 3 | fmfnfm.f | ⊢ ( 𝜑 → 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 4 | fmfnfm.fm | ⊢ ( 𝜑 → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ⊆ 𝐿 ) | |
| 5 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) |
| 6 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → 𝑥 ∈ 𝐿 ) | |
| 7 | ffn | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → 𝐹 Fn 𝑌 ) | |
| 8 | dffn4 | ⊢ ( 𝐹 Fn 𝑌 ↔ 𝐹 : 𝑌 –onto→ ran 𝐹 ) | |
| 9 | 7 8 | sylib | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → 𝐹 : 𝑌 –onto→ ran 𝐹 ) |
| 10 | foima | ⊢ ( 𝐹 : 𝑌 –onto→ ran 𝐹 → ( 𝐹 “ 𝑌 ) = ran 𝐹 ) | |
| 11 | 3 9 10 | 3syl | ⊢ ( 𝜑 → ( 𝐹 “ 𝑌 ) = ran 𝐹 ) |
| 12 | filtop | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐿 ) | |
| 13 | 2 12 | syl | ⊢ ( 𝜑 → 𝑋 ∈ 𝐿 ) |
| 14 | fgcl | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → ( 𝑌 filGen 𝐵 ) ∈ ( Fil ‘ 𝑌 ) ) | |
| 15 | filtop | ⊢ ( ( 𝑌 filGen 𝐵 ) ∈ ( Fil ‘ 𝑌 ) → 𝑌 ∈ ( 𝑌 filGen 𝐵 ) ) | |
| 16 | 1 14 15 | 3syl | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑌 filGen 𝐵 ) ) |
| 17 | eqid | ⊢ ( 𝑌 filGen 𝐵 ) = ( 𝑌 filGen 𝐵 ) | |
| 18 | 17 | imaelfm | ⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑌 ∈ ( 𝑌 filGen 𝐵 ) ) → ( 𝐹 “ 𝑌 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ) |
| 19 | 13 1 3 16 18 | syl31anc | ⊢ ( 𝜑 → ( 𝐹 “ 𝑌 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ) |
| 20 | 11 19 | eqeltrrd | ⊢ ( 𝜑 → ran 𝐹 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ) |
| 21 | 4 20 | sseldd | ⊢ ( 𝜑 → ran 𝐹 ∈ 𝐿 ) |
| 22 | 21 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ran 𝐹 ∈ 𝐿 ) |
| 23 | filin | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐿 ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑥 ∩ ran 𝐹 ) ∈ 𝐿 ) | |
| 24 | 5 6 22 23 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝑥 ∩ ran 𝐹 ) ∈ 𝐿 ) |
| 25 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → 𝑡 ⊆ 𝑋 ) | |
| 26 | elin | ⊢ ( 𝑦 ∈ ( 𝑥 ∩ ran 𝐹 ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝑦 ∈ ran 𝐹 ) ) | |
| 27 | fvelrnb | ⊢ ( 𝐹 Fn 𝑌 → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) | |
| 28 | 3 7 27 | 3syl | ⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) |
| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ) → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) |
| 30 | 3 | ffund | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 31 | 30 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑧 ∈ 𝑌 ) ) → Fun 𝐹 ) |
| 32 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑧 ∈ 𝑌 ) ) → 𝑧 ∈ 𝑌 ) | |
| 33 | 3 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝑌 ) |
| 34 | 33 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑧 ∈ 𝑌 ) ) → dom 𝐹 = 𝑌 ) |
| 35 | 32 34 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑧 ∈ 𝑌 ) ) → 𝑧 ∈ dom 𝐹 ) |
| 36 | fvimacnv | ⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑥 ↔ 𝑧 ∈ ( ◡ 𝐹 “ 𝑥 ) ) ) | |
| 37 | 31 35 36 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑧 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑥 ↔ 𝑧 ∈ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 38 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝑥 ) ⊆ dom 𝐹 | |
| 39 | funfvima2 | ⊢ ( ( Fun 𝐹 ∧ ( ◡ 𝐹 “ 𝑥 ) ⊆ dom 𝐹 ) → ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑥 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) ) | |
| 40 | 31 38 39 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑧 ∈ 𝑌 ) ) → ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑥 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
| 41 | ssel | ⊢ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ) ) | |
| 42 | 41 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑧 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ) ) |
| 43 | 40 42 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑧 ∈ 𝑌 ) ) → ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑥 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ) ) |
| 44 | 37 43 | sylbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑧 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑥 → ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ) ) |
| 45 | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑧 ) = 𝑦 → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) | |
| 46 | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑧 ) = 𝑦 → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ↔ 𝑦 ∈ 𝑡 ) ) | |
| 47 | 45 46 | imbi12d | ⊢ ( ( 𝐹 ‘ 𝑧 ) = 𝑦 → ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑥 → ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ) ↔ ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑡 ) ) ) |
| 48 | 44 47 | syl5ibcom | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑧 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑧 ) = 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑡 ) ) ) |
| 49 | 48 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ) → ( 𝑧 ∈ 𝑌 → ( ( 𝐹 ‘ 𝑧 ) = 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑡 ) ) ) ) |
| 50 | 49 | rexlimdv | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ) → ( ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑡 ) ) ) |
| 51 | 29 50 | sylbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ) → ( 𝑦 ∈ ran 𝐹 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑡 ) ) ) |
| 52 | 51 | impcomd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ) → ( ( 𝑦 ∈ 𝑥 ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ 𝑡 ) ) |
| 53 | 52 | adantrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( ( 𝑦 ∈ 𝑥 ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ 𝑡 ) ) |
| 54 | 26 53 | biimtrid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝑦 ∈ ( 𝑥 ∩ ran 𝐹 ) → 𝑦 ∈ 𝑡 ) ) |
| 55 | 54 | ssrdv | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝑥 ∩ ran 𝐹 ) ⊆ 𝑡 ) |
| 56 | filss | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ ( ( 𝑥 ∩ ran 𝐹 ) ∈ 𝐿 ∧ 𝑡 ⊆ 𝑋 ∧ ( 𝑥 ∩ ran 𝐹 ) ⊆ 𝑡 ) ) → 𝑡 ∈ 𝐿 ) | |
| 57 | 5 24 25 55 56 | syl13anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → 𝑡 ∈ 𝐿 ) |
| 58 | 57 | exp32 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) → ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) |
| 59 | imaeq2 | ⊢ ( 𝑠 = ( ◡ 𝐹 “ 𝑥 ) → ( 𝐹 “ 𝑠 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) | |
| 60 | 59 | sseq1d | ⊢ ( 𝑠 = ( ◡ 𝐹 “ 𝑥 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ↔ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ) ) |
| 61 | 60 | imbi1d | ⊢ ( 𝑠 = ( ◡ 𝐹 “ 𝑥 ) → ( ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ↔ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |
| 62 | 58 61 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐿 ) → ( 𝑠 = ( ◡ 𝐹 “ 𝑥 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |
| 63 | 62 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |