This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fmfnfm . (Contributed by Jeff Hankins, 19-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmfnfm.b | |- ( ph -> B e. ( fBas ` Y ) ) |
|
| fmfnfm.l | |- ( ph -> L e. ( Fil ` X ) ) |
||
| fmfnfm.f | |- ( ph -> F : Y --> X ) |
||
| fmfnfm.fm | |- ( ph -> ( ( X FilMap F ) ` B ) C_ L ) |
||
| Assertion | fmfnfmlem4 | |- ( ph -> ( t e. L <-> ( t C_ X /\ E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmfnfm.b | |- ( ph -> B e. ( fBas ` Y ) ) |
|
| 2 | fmfnfm.l | |- ( ph -> L e. ( Fil ` X ) ) |
|
| 3 | fmfnfm.f | |- ( ph -> F : Y --> X ) |
|
| 4 | fmfnfm.fm | |- ( ph -> ( ( X FilMap F ) ` B ) C_ L ) |
|
| 5 | filelss | |- ( ( L e. ( Fil ` X ) /\ t e. L ) -> t C_ X ) |
|
| 6 | 5 | ex | |- ( L e. ( Fil ` X ) -> ( t e. L -> t C_ X ) ) |
| 7 | 2 6 | syl | |- ( ph -> ( t e. L -> t C_ X ) ) |
| 8 | mptexg | |- ( L e. ( Fil ` X ) -> ( x e. L |-> ( `' F " x ) ) e. _V ) |
|
| 9 | rnexg | |- ( ( x e. L |-> ( `' F " x ) ) e. _V -> ran ( x e. L |-> ( `' F " x ) ) e. _V ) |
|
| 10 | 8 9 | syl | |- ( L e. ( Fil ` X ) -> ran ( x e. L |-> ( `' F " x ) ) e. _V ) |
| 11 | 2 10 | syl | |- ( ph -> ran ( x e. L |-> ( `' F " x ) ) e. _V ) |
| 12 | unexg | |- ( ( B e. ( fBas ` Y ) /\ ran ( x e. L |-> ( `' F " x ) ) e. _V ) -> ( B u. ran ( x e. L |-> ( `' F " x ) ) ) e. _V ) |
|
| 13 | 1 11 12 | syl2anc | |- ( ph -> ( B u. ran ( x e. L |-> ( `' F " x ) ) ) e. _V ) |
| 14 | ssfii | |- ( ( B u. ran ( x e. L |-> ( `' F " x ) ) ) e. _V -> ( B u. ran ( x e. L |-> ( `' F " x ) ) ) C_ ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) |
|
| 15 | 14 | unssbd | |- ( ( B u. ran ( x e. L |-> ( `' F " x ) ) ) e. _V -> ran ( x e. L |-> ( `' F " x ) ) C_ ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) |
| 16 | 13 15 | syl | |- ( ph -> ran ( x e. L |-> ( `' F " x ) ) C_ ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) |
| 17 | 16 | adantr | |- ( ( ph /\ t e. L ) -> ran ( x e. L |-> ( `' F " x ) ) C_ ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) |
| 18 | eqid | |- ( `' F " t ) = ( `' F " t ) |
|
| 19 | imaeq2 | |- ( x = t -> ( `' F " x ) = ( `' F " t ) ) |
|
| 20 | 19 | rspceeqv | |- ( ( t e. L /\ ( `' F " t ) = ( `' F " t ) ) -> E. x e. L ( `' F " t ) = ( `' F " x ) ) |
| 21 | 18 20 | mpan2 | |- ( t e. L -> E. x e. L ( `' F " t ) = ( `' F " x ) ) |
| 22 | 21 | adantl | |- ( ( ph /\ t e. L ) -> E. x e. L ( `' F " t ) = ( `' F " x ) ) |
| 23 | elfvdm | |- ( B e. ( fBas ` Y ) -> Y e. dom fBas ) |
|
| 24 | 1 23 | syl | |- ( ph -> Y e. dom fBas ) |
| 25 | cnvimass | |- ( `' F " t ) C_ dom F |
|
| 26 | 25 3 | fssdm | |- ( ph -> ( `' F " t ) C_ Y ) |
| 27 | 24 26 | ssexd | |- ( ph -> ( `' F " t ) e. _V ) |
| 28 | 27 | adantr | |- ( ( ph /\ t e. L ) -> ( `' F " t ) e. _V ) |
| 29 | eqid | |- ( x e. L |-> ( `' F " x ) ) = ( x e. L |-> ( `' F " x ) ) |
|
| 30 | 29 | elrnmpt | |- ( ( `' F " t ) e. _V -> ( ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( `' F " t ) = ( `' F " x ) ) ) |
| 31 | 28 30 | syl | |- ( ( ph /\ t e. L ) -> ( ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( `' F " t ) = ( `' F " x ) ) ) |
| 32 | 22 31 | mpbird | |- ( ( ph /\ t e. L ) -> ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) ) |
| 33 | 17 32 | sseldd | |- ( ( ph /\ t e. L ) -> ( `' F " t ) e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) |
| 34 | ffun | |- ( F : Y --> X -> Fun F ) |
|
| 35 | ssid | |- ( `' F " t ) C_ ( `' F " t ) |
|
| 36 | funimass2 | |- ( ( Fun F /\ ( `' F " t ) C_ ( `' F " t ) ) -> ( F " ( `' F " t ) ) C_ t ) |
|
| 37 | 34 35 36 | sylancl | |- ( F : Y --> X -> ( F " ( `' F " t ) ) C_ t ) |
| 38 | 3 37 | syl | |- ( ph -> ( F " ( `' F " t ) ) C_ t ) |
| 39 | 38 | adantr | |- ( ( ph /\ t e. L ) -> ( F " ( `' F " t ) ) C_ t ) |
| 40 | imaeq2 | |- ( s = ( `' F " t ) -> ( F " s ) = ( F " ( `' F " t ) ) ) |
|
| 41 | 40 | sseq1d | |- ( s = ( `' F " t ) -> ( ( F " s ) C_ t <-> ( F " ( `' F " t ) ) C_ t ) ) |
| 42 | 41 | rspcev | |- ( ( ( `' F " t ) e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) /\ ( F " ( `' F " t ) ) C_ t ) -> E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t ) |
| 43 | 33 39 42 | syl2anc | |- ( ( ph /\ t e. L ) -> E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t ) |
| 44 | 43 | ex | |- ( ph -> ( t e. L -> E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t ) ) |
| 45 | 7 44 | jcad | |- ( ph -> ( t e. L -> ( t C_ X /\ E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t ) ) ) |
| 46 | elfiun | |- ( ( B e. ( fBas ` Y ) /\ ran ( x e. L |-> ( `' F " x ) ) e. _V ) -> ( s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) <-> ( s e. ( fi ` B ) \/ s e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) \/ E. z e. ( fi ` B ) E. w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) s = ( z i^i w ) ) ) ) |
|
| 47 | 1 11 46 | syl2anc | |- ( ph -> ( s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) <-> ( s e. ( fi ` B ) \/ s e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) \/ E. z e. ( fi ` B ) E. w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) s = ( z i^i w ) ) ) ) |
| 48 | 1 2 3 4 | fmfnfmlem1 | |- ( ph -> ( s e. ( fi ` B ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 49 | 1 2 3 4 | fmfnfmlem3 | |- ( ph -> ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) = ran ( x e. L |-> ( `' F " x ) ) ) |
| 50 | 49 | eleq2d | |- ( ph -> ( s e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) <-> s e. ran ( x e. L |-> ( `' F " x ) ) ) ) |
| 51 | 29 | elrnmpt | |- ( s e. _V -> ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L s = ( `' F " x ) ) ) |
| 52 | 51 | elv | |- ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L s = ( `' F " x ) ) |
| 53 | 1 2 3 4 | fmfnfmlem2 | |- ( ph -> ( E. x e. L s = ( `' F " x ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 54 | 52 53 | biimtrid | |- ( ph -> ( s e. ran ( x e. L |-> ( `' F " x ) ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 55 | 50 54 | sylbid | |- ( ph -> ( s e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 56 | 49 | eleq2d | |- ( ph -> ( w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) <-> w e. ran ( x e. L |-> ( `' F " x ) ) ) ) |
| 57 | 29 | elrnmpt | |- ( w e. _V -> ( w e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L w = ( `' F " x ) ) ) |
| 58 | 57 | elv | |- ( w e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L w = ( `' F " x ) ) |
| 59 | 56 58 | bitrdi | |- ( ph -> ( w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) <-> E. x e. L w = ( `' F " x ) ) ) |
| 60 | 59 | adantr | |- ( ( ph /\ z e. ( fi ` B ) ) -> ( w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) <-> E. x e. L w = ( `' F " x ) ) ) |
| 61 | fbssfi | |- ( ( B e. ( fBas ` Y ) /\ z e. ( fi ` B ) ) -> E. s e. B s C_ z ) |
|
| 62 | 1 61 | sylan | |- ( ( ph /\ z e. ( fi ` B ) ) -> E. s e. B s C_ z ) |
| 63 | 2 | ad3antrrr | |- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> L e. ( Fil ` X ) ) |
| 64 | 2 | adantr | |- ( ( ph /\ ( s e. B /\ s C_ z ) ) -> L e. ( Fil ` X ) ) |
| 65 | 4 | adantr | |- ( ( ph /\ s e. B ) -> ( ( X FilMap F ) ` B ) C_ L ) |
| 66 | filtop | |- ( L e. ( Fil ` X ) -> X e. L ) |
|
| 67 | 2 66 | syl | |- ( ph -> X e. L ) |
| 68 | 67 1 3 | 3jca | |- ( ph -> ( X e. L /\ B e. ( fBas ` Y ) /\ F : Y --> X ) ) |
| 69 | 68 | adantr | |- ( ( ph /\ s e. B ) -> ( X e. L /\ B e. ( fBas ` Y ) /\ F : Y --> X ) ) |
| 70 | ssfg | |- ( B e. ( fBas ` Y ) -> B C_ ( Y filGen B ) ) |
|
| 71 | 1 70 | syl | |- ( ph -> B C_ ( Y filGen B ) ) |
| 72 | 71 | sselda | |- ( ( ph /\ s e. B ) -> s e. ( Y filGen B ) ) |
| 73 | eqid | |- ( Y filGen B ) = ( Y filGen B ) |
|
| 74 | 73 | imaelfm | |- ( ( ( X e. L /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ s e. ( Y filGen B ) ) -> ( F " s ) e. ( ( X FilMap F ) ` B ) ) |
| 75 | 69 72 74 | syl2anc | |- ( ( ph /\ s e. B ) -> ( F " s ) e. ( ( X FilMap F ) ` B ) ) |
| 76 | 65 75 | sseldd | |- ( ( ph /\ s e. B ) -> ( F " s ) e. L ) |
| 77 | 76 | adantrr | |- ( ( ph /\ ( s e. B /\ s C_ z ) ) -> ( F " s ) e. L ) |
| 78 | 64 77 | jca | |- ( ( ph /\ ( s e. B /\ s C_ z ) ) -> ( L e. ( Fil ` X ) /\ ( F " s ) e. L ) ) |
| 79 | filin | |- ( ( L e. ( Fil ` X ) /\ ( F " s ) e. L /\ x e. L ) -> ( ( F " s ) i^i x ) e. L ) |
|
| 80 | 79 | 3expa | |- ( ( ( L e. ( Fil ` X ) /\ ( F " s ) e. L ) /\ x e. L ) -> ( ( F " s ) i^i x ) e. L ) |
| 81 | 78 80 | sylan | |- ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) -> ( ( F " s ) i^i x ) e. L ) |
| 82 | 81 | adantr | |- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> ( ( F " s ) i^i x ) e. L ) |
| 83 | simprr | |- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> t C_ X ) |
|
| 84 | elin | |- ( w e. ( ( F " s ) i^i x ) <-> ( w e. ( F " s ) /\ w e. x ) ) |
|
| 85 | 3 34 | syl | |- ( ph -> Fun F ) |
| 86 | fvelima | |- ( ( Fun F /\ w e. ( F " s ) ) -> E. y e. s ( F ` y ) = w ) |
|
| 87 | 86 | ex | |- ( Fun F -> ( w e. ( F " s ) -> E. y e. s ( F ` y ) = w ) ) |
| 88 | 85 87 | syl | |- ( ph -> ( w e. ( F " s ) -> E. y e. s ( F ` y ) = w ) ) |
| 89 | 88 | ad3antrrr | |- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) -> ( w e. ( F " s ) -> E. y e. s ( F ` y ) = w ) ) |
| 90 | 85 | ad3antrrr | |- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( t C_ X /\ ( y e. s /\ ( F ` y ) e. x ) ) ) -> Fun F ) |
| 91 | simplrr | |- ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) -> s C_ z ) |
|
| 92 | simprl | |- ( ( t C_ X /\ ( y e. s /\ ( F ` y ) e. x ) ) -> y e. s ) |
|
| 93 | ssel2 | |- ( ( s C_ z /\ y e. s ) -> y e. z ) |
|
| 94 | 91 92 93 | syl2an | |- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( t C_ X /\ ( y e. s /\ ( F ` y ) e. x ) ) ) -> y e. z ) |
| 95 | 85 | ad2antrr | |- ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ y e. s ) -> Fun F ) |
| 96 | fbelss | |- ( ( B e. ( fBas ` Y ) /\ s e. B ) -> s C_ Y ) |
|
| 97 | 1 96 | sylan | |- ( ( ph /\ s e. B ) -> s C_ Y ) |
| 98 | 3 | fdmd | |- ( ph -> dom F = Y ) |
| 99 | 98 | adantr | |- ( ( ph /\ s e. B ) -> dom F = Y ) |
| 100 | 97 99 | sseqtrrd | |- ( ( ph /\ s e. B ) -> s C_ dom F ) |
| 101 | 100 | adantrr | |- ( ( ph /\ ( s e. B /\ s C_ z ) ) -> s C_ dom F ) |
| 102 | 101 | sselda | |- ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ y e. s ) -> y e. dom F ) |
| 103 | fvimacnv | |- ( ( Fun F /\ y e. dom F ) -> ( ( F ` y ) e. x <-> y e. ( `' F " x ) ) ) |
|
| 104 | 95 102 103 | syl2anc | |- ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ y e. s ) -> ( ( F ` y ) e. x <-> y e. ( `' F " x ) ) ) |
| 105 | 104 | biimpd | |- ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ y e. s ) -> ( ( F ` y ) e. x -> y e. ( `' F " x ) ) ) |
| 106 | 105 | impr | |- ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ ( y e. s /\ ( F ` y ) e. x ) ) -> y e. ( `' F " x ) ) |
| 107 | 106 | ad2ant2rl | |- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( t C_ X /\ ( y e. s /\ ( F ` y ) e. x ) ) ) -> y e. ( `' F " x ) ) |
| 108 | 94 107 | elind | |- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( t C_ X /\ ( y e. s /\ ( F ` y ) e. x ) ) ) -> y e. ( z i^i ( `' F " x ) ) ) |
| 109 | inss2 | |- ( z i^i ( `' F " x ) ) C_ ( `' F " x ) |
|
| 110 | cnvimass | |- ( `' F " x ) C_ dom F |
|
| 111 | 109 110 | sstri | |- ( z i^i ( `' F " x ) ) C_ dom F |
| 112 | funfvima2 | |- ( ( Fun F /\ ( z i^i ( `' F " x ) ) C_ dom F ) -> ( y e. ( z i^i ( `' F " x ) ) -> ( F ` y ) e. ( F " ( z i^i ( `' F " x ) ) ) ) ) |
|
| 113 | 111 112 | mpan2 | |- ( Fun F -> ( y e. ( z i^i ( `' F " x ) ) -> ( F ` y ) e. ( F " ( z i^i ( `' F " x ) ) ) ) ) |
| 114 | 90 108 113 | sylc | |- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( t C_ X /\ ( y e. s /\ ( F ` y ) e. x ) ) ) -> ( F ` y ) e. ( F " ( z i^i ( `' F " x ) ) ) ) |
| 115 | 114 | anassrs | |- ( ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) /\ ( y e. s /\ ( F ` y ) e. x ) ) -> ( F ` y ) e. ( F " ( z i^i ( `' F " x ) ) ) ) |
| 116 | 115 | expr | |- ( ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) /\ y e. s ) -> ( ( F ` y ) e. x -> ( F ` y ) e. ( F " ( z i^i ( `' F " x ) ) ) ) ) |
| 117 | eleq1 | |- ( ( F ` y ) = w -> ( ( F ` y ) e. x <-> w e. x ) ) |
|
| 118 | eleq1 | |- ( ( F ` y ) = w -> ( ( F ` y ) e. ( F " ( z i^i ( `' F " x ) ) ) <-> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) |
|
| 119 | 117 118 | imbi12d | |- ( ( F ` y ) = w -> ( ( ( F ` y ) e. x -> ( F ` y ) e. ( F " ( z i^i ( `' F " x ) ) ) ) <-> ( w e. x -> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) ) |
| 120 | 116 119 | syl5ibcom | |- ( ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) /\ y e. s ) -> ( ( F ` y ) = w -> ( w e. x -> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) ) |
| 121 | 120 | rexlimdva | |- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) -> ( E. y e. s ( F ` y ) = w -> ( w e. x -> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) ) |
| 122 | 89 121 | syld | |- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) -> ( w e. ( F " s ) -> ( w e. x -> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) ) |
| 123 | 122 | impd | |- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) -> ( ( w e. ( F " s ) /\ w e. x ) -> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) |
| 124 | 84 123 | biimtrid | |- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) -> ( w e. ( ( F " s ) i^i x ) -> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) |
| 125 | 124 | adantrl | |- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> ( w e. ( ( F " s ) i^i x ) -> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) |
| 126 | 125 | ssrdv | |- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> ( ( F " s ) i^i x ) C_ ( F " ( z i^i ( `' F " x ) ) ) ) |
| 127 | simprl | |- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> ( F " ( z i^i ( `' F " x ) ) ) C_ t ) |
|
| 128 | 126 127 | sstrd | |- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> ( ( F " s ) i^i x ) C_ t ) |
| 129 | filss | |- ( ( L e. ( Fil ` X ) /\ ( ( ( F " s ) i^i x ) e. L /\ t C_ X /\ ( ( F " s ) i^i x ) C_ t ) ) -> t e. L ) |
|
| 130 | 63 82 83 128 129 | syl13anc | |- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> t e. L ) |
| 131 | 130 | exp32 | |- ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) -> ( ( F " ( z i^i ( `' F " x ) ) ) C_ t -> ( t C_ X -> t e. L ) ) ) |
| 132 | ineq2 | |- ( w = ( `' F " x ) -> ( z i^i w ) = ( z i^i ( `' F " x ) ) ) |
|
| 133 | 132 | imaeq2d | |- ( w = ( `' F " x ) -> ( F " ( z i^i w ) ) = ( F " ( z i^i ( `' F " x ) ) ) ) |
| 134 | 133 | sseq1d | |- ( w = ( `' F " x ) -> ( ( F " ( z i^i w ) ) C_ t <-> ( F " ( z i^i ( `' F " x ) ) ) C_ t ) ) |
| 135 | 134 | imbi1d | |- ( w = ( `' F " x ) -> ( ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) <-> ( ( F " ( z i^i ( `' F " x ) ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 136 | 131 135 | syl5ibrcom | |- ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) -> ( w = ( `' F " x ) -> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 137 | 136 | rexlimdva | |- ( ( ph /\ ( s e. B /\ s C_ z ) ) -> ( E. x e. L w = ( `' F " x ) -> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 138 | 137 | rexlimdvaa | |- ( ph -> ( E. s e. B s C_ z -> ( E. x e. L w = ( `' F " x ) -> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) ) |
| 139 | 138 | imp | |- ( ( ph /\ E. s e. B s C_ z ) -> ( E. x e. L w = ( `' F " x ) -> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 140 | 62 139 | syldan | |- ( ( ph /\ z e. ( fi ` B ) ) -> ( E. x e. L w = ( `' F " x ) -> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 141 | 60 140 | sylbid | |- ( ( ph /\ z e. ( fi ` B ) ) -> ( w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) -> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 142 | 141 | impr | |- ( ( ph /\ ( z e. ( fi ` B ) /\ w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) ) ) -> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) |
| 143 | imaeq2 | |- ( s = ( z i^i w ) -> ( F " s ) = ( F " ( z i^i w ) ) ) |
|
| 144 | 143 | sseq1d | |- ( s = ( z i^i w ) -> ( ( F " s ) C_ t <-> ( F " ( z i^i w ) ) C_ t ) ) |
| 145 | 144 | imbi1d | |- ( s = ( z i^i w ) -> ( ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) <-> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 146 | 142 145 | syl5ibrcom | |- ( ( ph /\ ( z e. ( fi ` B ) /\ w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) ) ) -> ( s = ( z i^i w ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 147 | 146 | rexlimdvva | |- ( ph -> ( E. z e. ( fi ` B ) E. w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) s = ( z i^i w ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 148 | 48 55 147 | 3jaod | |- ( ph -> ( ( s e. ( fi ` B ) \/ s e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) \/ E. z e. ( fi ` B ) E. w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) s = ( z i^i w ) ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 149 | 47 148 | sylbid | |- ( ph -> ( s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 150 | 149 | rexlimdv | |- ( ph -> ( E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) |
| 151 | 150 | impcomd | |- ( ph -> ( ( t C_ X /\ E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t ) -> t e. L ) ) |
| 152 | 45 151 | impbid | |- ( ph -> ( t e. L <-> ( t C_ X /\ E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t ) ) ) |