This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter base contains subsets of its finite intersections. (Contributed by Mario Carneiro, 26-Nov-2013) (Revised by Stefan O'Rear, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fbssfi | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ∈ ( fi ‘ 𝐹 ) ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffi2 | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( fi ‘ 𝐹 ) = ∩ { 𝑧 ∣ ( 𝐹 ⊆ 𝑧 ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ 𝑧 ( 𝑢 ∩ 𝑣 ) ∈ 𝑧 ) } ) | |
| 2 | sseq2 | ⊢ ( 𝑡 = ( 𝑢 ∩ 𝑣 ) → ( 𝑥 ⊆ 𝑡 ↔ 𝑥 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) | |
| 3 | 2 | rexbidv | ⊢ ( 𝑡 = ( 𝑢 ∩ 𝑣 ) → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ↔ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) |
| 4 | inss1 | ⊢ ( 𝑢 ∩ 𝑣 ) ⊆ 𝑢 | |
| 5 | simp1r | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹 ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣 ) ) → 𝑢 ∈ 𝒫 ∪ 𝐹 ) | |
| 6 | 5 | elpwid | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹 ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣 ) ) → 𝑢 ⊆ ∪ 𝐹 ) |
| 7 | 4 6 | sstrid | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹 ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣 ) ) → ( 𝑢 ∩ 𝑣 ) ⊆ ∪ 𝐹 ) |
| 8 | vex | ⊢ 𝑢 ∈ V | |
| 9 | 8 | inex1 | ⊢ ( 𝑢 ∩ 𝑣 ) ∈ V |
| 10 | 9 | elpw | ⊢ ( ( 𝑢 ∩ 𝑣 ) ∈ 𝒫 ∪ 𝐹 ↔ ( 𝑢 ∩ 𝑣 ) ⊆ ∪ 𝐹 ) |
| 11 | 7 10 | sylibr | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹 ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣 ) ) → ( 𝑢 ∩ 𝑣 ) ∈ 𝒫 ∪ 𝐹 ) |
| 12 | simpl | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) | |
| 13 | simpl | ⊢ ( ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢 ) → 𝑦 ∈ 𝐹 ) | |
| 14 | simpl | ⊢ ( ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣 ) → 𝑧 ∈ 𝐹 ) | |
| 15 | fbasssin | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) | |
| 16 | 12 13 14 15 | syl3an | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹 ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣 ) ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) |
| 17 | ss2in | ⊢ ( ( 𝑦 ⊆ 𝑢 ∧ 𝑧 ⊆ 𝑣 ) → ( 𝑦 ∩ 𝑧 ) ⊆ ( 𝑢 ∩ 𝑣 ) ) | |
| 18 | 17 | ad2ant2l | ⊢ ( ( ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣 ) ) → ( 𝑦 ∩ 𝑧 ) ⊆ ( 𝑢 ∩ 𝑣 ) ) |
| 19 | 18 | 3adant1 | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹 ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣 ) ) → ( 𝑦 ∩ 𝑧 ) ⊆ ( 𝑢 ∩ 𝑣 ) ) |
| 20 | sstr | ⊢ ( ( 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ∧ ( 𝑦 ∩ 𝑧 ) ⊆ ( 𝑢 ∩ 𝑣 ) ) → 𝑥 ⊆ ( 𝑢 ∩ 𝑣 ) ) | |
| 21 | 20 | expcom | ⊢ ( ( 𝑦 ∩ 𝑧 ) ⊆ ( 𝑢 ∩ 𝑣 ) → ( 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) → 𝑥 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) |
| 22 | 19 21 | syl | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹 ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣 ) ) → ( 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) → 𝑥 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) |
| 23 | 22 | reximdv | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹 ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣 ) ) → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) |
| 24 | 16 23 | mpd | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹 ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣 ) ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑢 ∩ 𝑣 ) ) |
| 25 | 3 11 24 | elrabd | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹 ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣 ) ) → ( 𝑢 ∩ 𝑣 ) ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ) |
| 26 | 25 | 3expa | ⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹 ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢 ) ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣 ) ) → ( 𝑢 ∩ 𝑣 ) ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ) |
| 27 | 26 | rexlimdvaa | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹 ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢 ) ) → ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑣 → ( 𝑢 ∩ 𝑣 ) ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ) ) |
| 28 | 27 | ralrimivw | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹 ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢 ) ) → ∀ 𝑣 ∈ 𝒫 ∪ 𝐹 ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑣 → ( 𝑢 ∩ 𝑣 ) ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ) ) |
| 29 | sseq2 | ⊢ ( 𝑡 = 𝑣 → ( 𝑥 ⊆ 𝑡 ↔ 𝑥 ⊆ 𝑣 ) ) | |
| 30 | 29 | rexbidv | ⊢ ( 𝑡 = 𝑣 → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ↔ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑣 ) ) |
| 31 | sseq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ⊆ 𝑣 ↔ 𝑧 ⊆ 𝑣 ) ) | |
| 32 | 31 | cbvrexvw | ⊢ ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑣 ↔ ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑣 ) |
| 33 | 30 32 | bitrdi | ⊢ ( 𝑡 = 𝑣 → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ↔ ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑣 ) ) |
| 34 | 33 | ralrab | ⊢ ( ∀ 𝑣 ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ( 𝑢 ∩ 𝑣 ) ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ↔ ∀ 𝑣 ∈ 𝒫 ∪ 𝐹 ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑣 → ( 𝑢 ∩ 𝑣 ) ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ) ) |
| 35 | 28 34 | sylibr | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹 ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢 ) ) → ∀ 𝑣 ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ( 𝑢 ∩ 𝑣 ) ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ) |
| 36 | 35 | rexlimdvaa | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹 ) → ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑢 → ∀ 𝑣 ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ( 𝑢 ∩ 𝑣 ) ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ) ) |
| 37 | 36 | ralrimiva | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ∀ 𝑢 ∈ 𝒫 ∪ 𝐹 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑢 → ∀ 𝑣 ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ( 𝑢 ∩ 𝑣 ) ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ) ) |
| 38 | sseq2 | ⊢ ( 𝑡 = 𝑢 → ( 𝑥 ⊆ 𝑡 ↔ 𝑥 ⊆ 𝑢 ) ) | |
| 39 | 38 | rexbidv | ⊢ ( 𝑡 = 𝑢 → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ↔ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑢 ) ) |
| 40 | sseq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝑢 ↔ 𝑦 ⊆ 𝑢 ) ) | |
| 41 | 40 | cbvrexvw | ⊢ ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑢 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑢 ) |
| 42 | 39 41 | bitrdi | ⊢ ( 𝑡 = 𝑢 → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑢 ) ) |
| 43 | 42 | ralrab | ⊢ ( ∀ 𝑢 ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ∀ 𝑣 ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ( 𝑢 ∩ 𝑣 ) ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ↔ ∀ 𝑢 ∈ 𝒫 ∪ 𝐹 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑢 → ∀ 𝑣 ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ( 𝑢 ∩ 𝑣 ) ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ) ) |
| 44 | 37 43 | sylibr | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ∀ 𝑢 ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ∀ 𝑣 ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ( 𝑢 ∩ 𝑣 ) ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ) |
| 45 | pwuni | ⊢ 𝐹 ⊆ 𝒫 ∪ 𝐹 | |
| 46 | ssid | ⊢ 𝑡 ⊆ 𝑡 | |
| 47 | sseq1 | ⊢ ( 𝑥 = 𝑡 → ( 𝑥 ⊆ 𝑡 ↔ 𝑡 ⊆ 𝑡 ) ) | |
| 48 | 47 | rspcev | ⊢ ( ( 𝑡 ∈ 𝐹 ∧ 𝑡 ⊆ 𝑡 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) |
| 49 | 46 48 | mpan2 | ⊢ ( 𝑡 ∈ 𝐹 → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) |
| 50 | 49 | rgen | ⊢ ∀ 𝑡 ∈ 𝐹 ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 |
| 51 | ssrab | ⊢ ( 𝐹 ⊆ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ↔ ( 𝐹 ⊆ 𝒫 ∪ 𝐹 ∧ ∀ 𝑡 ∈ 𝐹 ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) ) | |
| 52 | 45 50 51 | mpbir2an | ⊢ 𝐹 ⊆ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } |
| 53 | 44 52 | jctil | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐹 ⊆ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ∧ ∀ 𝑢 ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ∀ 𝑣 ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ( 𝑢 ∩ 𝑣 ) ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ) ) |
| 54 | uniexg | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ∪ 𝐹 ∈ V ) | |
| 55 | pwexg | ⊢ ( ∪ 𝐹 ∈ V → 𝒫 ∪ 𝐹 ∈ V ) | |
| 56 | rabexg | ⊢ ( 𝒫 ∪ 𝐹 ∈ V → { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ∈ V ) | |
| 57 | sseq2 | ⊢ ( 𝑧 = { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } → ( 𝐹 ⊆ 𝑧 ↔ 𝐹 ⊆ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ) ) | |
| 58 | eleq2 | ⊢ ( 𝑧 = { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } → ( ( 𝑢 ∩ 𝑣 ) ∈ 𝑧 ↔ ( 𝑢 ∩ 𝑣 ) ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ) ) | |
| 59 | 58 | raleqbi1dv | ⊢ ( 𝑧 = { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } → ( ∀ 𝑣 ∈ 𝑧 ( 𝑢 ∩ 𝑣 ) ∈ 𝑧 ↔ ∀ 𝑣 ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ( 𝑢 ∩ 𝑣 ) ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ) ) |
| 60 | 59 | raleqbi1dv | ⊢ ( 𝑧 = { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } → ( ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ 𝑧 ( 𝑢 ∩ 𝑣 ) ∈ 𝑧 ↔ ∀ 𝑢 ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ∀ 𝑣 ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ( 𝑢 ∩ 𝑣 ) ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ) ) |
| 61 | 57 60 | anbi12d | ⊢ ( 𝑧 = { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } → ( ( 𝐹 ⊆ 𝑧 ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ 𝑧 ( 𝑢 ∩ 𝑣 ) ∈ 𝑧 ) ↔ ( 𝐹 ⊆ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ∧ ∀ 𝑢 ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ∀ 𝑣 ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ( 𝑢 ∩ 𝑣 ) ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ) ) ) |
| 62 | 61 | elabg | ⊢ ( { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ∈ V → ( { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ∈ { 𝑧 ∣ ( 𝐹 ⊆ 𝑧 ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ 𝑧 ( 𝑢 ∩ 𝑣 ) ∈ 𝑧 ) } ↔ ( 𝐹 ⊆ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ∧ ∀ 𝑢 ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ∀ 𝑣 ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ( 𝑢 ∩ 𝑣 ) ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ) ) ) |
| 63 | 54 55 56 62 | 4syl | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ∈ { 𝑧 ∣ ( 𝐹 ⊆ 𝑧 ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ 𝑧 ( 𝑢 ∩ 𝑣 ) ∈ 𝑧 ) } ↔ ( 𝐹 ⊆ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ∧ ∀ 𝑢 ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ∀ 𝑣 ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ( 𝑢 ∩ 𝑣 ) ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ) ) ) |
| 64 | 53 63 | mpbird | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ∈ { 𝑧 ∣ ( 𝐹 ⊆ 𝑧 ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ 𝑧 ( 𝑢 ∩ 𝑣 ) ∈ 𝑧 ) } ) |
| 65 | intss1 | ⊢ ( { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ∈ { 𝑧 ∣ ( 𝐹 ⊆ 𝑧 ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ 𝑧 ( 𝑢 ∩ 𝑣 ) ∈ 𝑧 ) } → ∩ { 𝑧 ∣ ( 𝐹 ⊆ 𝑧 ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ 𝑧 ( 𝑢 ∩ 𝑣 ) ∈ 𝑧 ) } ⊆ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ) | |
| 66 | 64 65 | syl | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ∩ { 𝑧 ∣ ( 𝐹 ⊆ 𝑧 ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ 𝑧 ( 𝑢 ∩ 𝑣 ) ∈ 𝑧 ) } ⊆ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ) |
| 67 | 1 66 | eqsstrd | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( fi ‘ 𝐹 ) ⊆ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ) |
| 68 | 67 | sselda | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ∈ ( fi ‘ 𝐹 ) ) → 𝐴 ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ) |
| 69 | sseq2 | ⊢ ( 𝑡 = 𝐴 → ( 𝑥 ⊆ 𝑡 ↔ 𝑥 ⊆ 𝐴 ) ) | |
| 70 | 69 | rexbidv | ⊢ ( 𝑡 = 𝐴 → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ↔ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴 ) ) |
| 71 | 70 | elrab | ⊢ ( 𝐴 ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } ↔ ( 𝐴 ∈ 𝒫 ∪ 𝐹 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴 ) ) |
| 72 | 71 | simprbi | ⊢ ( 𝐴 ∈ { 𝑡 ∈ 𝒫 ∪ 𝐹 ∣ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 } → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴 ) |
| 73 | 68 72 | syl | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ∈ ( fi ‘ 𝐹 ) ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴 ) |