This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function for performing an even permutation after a fixed odd permutation is one to one onto all odd permutations. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evpmodpmf1o.s | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | |
| evpmodpmf1o.p | ⊢ 𝑃 = ( Base ‘ 𝑆 ) | ||
| Assertion | evpmodpmf1o | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) : ( pmEven ‘ 𝐷 ) –1-1-onto→ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evpmodpmf1o.s | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | |
| 2 | evpmodpmf1o.p | ⊢ 𝑃 = ( Base ‘ 𝑆 ) | |
| 3 | simpll | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → 𝐷 ∈ Fin ) | |
| 4 | 1 | symggrp | ⊢ ( 𝐷 ∈ Fin → 𝑆 ∈ Grp ) |
| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → 𝑆 ∈ Grp ) |
| 6 | eldifi | ⊢ ( 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) → 𝐹 ∈ 𝑃 ) | |
| 7 | 6 | ad2antlr | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → 𝐹 ∈ 𝑃 ) |
| 8 | 1 2 | evpmss | ⊢ ( pmEven ‘ 𝐷 ) ⊆ 𝑃 |
| 9 | 8 | sseli | ⊢ ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) → 𝑓 ∈ 𝑃 ) |
| 10 | 9 | adantl | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → 𝑓 ∈ 𝑃 ) |
| 11 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 12 | 2 11 | grpcl | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝐹 ∈ 𝑃 ∧ 𝑓 ∈ 𝑃 ) → ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ∈ 𝑃 ) |
| 13 | 5 7 10 12 | syl3anc | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ∈ 𝑃 ) |
| 14 | eqid | ⊢ ( pmSgn ‘ 𝐷 ) = ( pmSgn ‘ 𝐷 ) | |
| 15 | eqid | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) | |
| 16 | 1 14 15 | psgnghm2 | ⊢ ( 𝐷 ∈ Fin → ( pmSgn ‘ 𝐷 ) ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 17 | 16 | ad2antrr | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( pmSgn ‘ 𝐷 ) ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 18 | prex | ⊢ { 1 , - 1 } ∈ V | |
| 19 | eqid | ⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) | |
| 20 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 21 | 19 20 | mgpplusg | ⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
| 22 | 15 21 | ressplusg | ⊢ ( { 1 , - 1 } ∈ V → · = ( +g ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 23 | 18 22 | ax-mp | ⊢ · = ( +g ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) |
| 24 | 2 11 23 | ghmlin | ⊢ ( ( ( pmSgn ‘ 𝐷 ) ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ∧ 𝐹 ∈ 𝑃 ∧ 𝑓 ∈ 𝑃 ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) = ( ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) · ( ( pmSgn ‘ 𝐷 ) ‘ 𝑓 ) ) ) |
| 25 | 17 7 10 24 | syl3anc | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) = ( ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) · ( ( pmSgn ‘ 𝐷 ) ‘ 𝑓 ) ) ) |
| 26 | 1 2 14 | psgnodpm | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) = - 1 ) |
| 27 | 26 | adantr | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) = - 1 ) |
| 28 | 1 2 14 | psgnevpm | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ 𝑓 ) = 1 ) |
| 29 | 28 | adantlr | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ 𝑓 ) = 1 ) |
| 30 | 27 29 | oveq12d | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) · ( ( pmSgn ‘ 𝐷 ) ‘ 𝑓 ) ) = ( - 1 · 1 ) ) |
| 31 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 32 | 31 | mulm1i | ⊢ ( - 1 · 1 ) = - 1 |
| 33 | 30 32 | eqtrdi | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) · ( ( pmSgn ‘ 𝐷 ) ‘ 𝑓 ) ) = - 1 ) |
| 34 | 25 33 | eqtrd | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) = - 1 ) |
| 35 | 1 2 14 | psgnodpmr | ⊢ ( ( 𝐷 ∈ Fin ∧ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ∈ 𝑃 ∧ ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) = - 1 ) → ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) |
| 36 | 3 13 34 35 | syl3anc | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) |
| 37 | 36 | fmpttd | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) : ( pmEven ‘ 𝐷 ) ⟶ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) |
| 38 | 4 | ad2antrr | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → 𝑆 ∈ Grp ) |
| 39 | eqid | ⊢ ( invg ‘ 𝑆 ) = ( invg ‘ 𝑆 ) | |
| 40 | 2 39 | grpinvcl | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝐹 ∈ 𝑃 ) → ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ∈ 𝑃 ) |
| 41 | 4 6 40 | syl2an | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ∈ 𝑃 ) |
| 42 | 41 | adantr | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ∈ 𝑃 ) |
| 43 | eldifi | ⊢ ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) → 𝑔 ∈ 𝑃 ) | |
| 44 | 43 | adantl | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → 𝑔 ∈ 𝑃 ) |
| 45 | 2 11 | grpcl | ⊢ ( ( 𝑆 ∈ Grp ∧ ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ∈ 𝑃 ∧ 𝑔 ∈ 𝑃 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ∈ 𝑃 ) |
| 46 | 38 42 44 45 | syl3anc | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ∈ 𝑃 ) |
| 47 | 16 | ad2antrr | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( pmSgn ‘ 𝐷 ) ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 48 | 2 11 23 | ghmlin | ⊢ ( ( ( pmSgn ‘ 𝐷 ) ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ∧ ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ∈ 𝑃 ∧ 𝑔 ∈ 𝑃 ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) = ( ( ( pmSgn ‘ 𝐷 ) ‘ ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) · ( ( pmSgn ‘ 𝐷 ) ‘ 𝑔 ) ) ) |
| 49 | 47 42 44 48 | syl3anc | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) = ( ( ( pmSgn ‘ 𝐷 ) ‘ ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) · ( ( pmSgn ‘ 𝐷 ) ‘ 𝑔 ) ) ) |
| 50 | 1 2 39 | symginv | ⊢ ( 𝐹 ∈ 𝑃 → ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) = ◡ 𝐹 ) |
| 51 | 6 50 | syl | ⊢ ( 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) → ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) = ◡ 𝐹 ) |
| 52 | 51 | ad2antlr | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) = ◡ 𝐹 ) |
| 53 | 52 | fveq2d | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) = ( ( pmSgn ‘ 𝐷 ) ‘ ◡ 𝐹 ) ) |
| 54 | 1 2 14 | psgnodpm | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ 𝑔 ) = - 1 ) |
| 55 | 54 | adantlr | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ 𝑔 ) = - 1 ) |
| 56 | 53 55 | oveq12d | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( ( pmSgn ‘ 𝐷 ) ‘ ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) · ( ( pmSgn ‘ 𝐷 ) ‘ 𝑔 ) ) = ( ( ( pmSgn ‘ 𝐷 ) ‘ ◡ 𝐹 ) · - 1 ) ) |
| 57 | simpll | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → 𝐷 ∈ Fin ) | |
| 58 | 6 | ad2antlr | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → 𝐹 ∈ 𝑃 ) |
| 59 | 1 14 2 | psgninv | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( pmSgn ‘ 𝐷 ) ‘ ◡ 𝐹 ) = ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) ) |
| 60 | 57 58 59 | syl2anc | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ◡ 𝐹 ) = ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) ) |
| 61 | 26 | adantr | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) = - 1 ) |
| 62 | 60 61 | eqtrd | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ◡ 𝐹 ) = - 1 ) |
| 63 | 62 | oveq1d | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( ( pmSgn ‘ 𝐷 ) ‘ ◡ 𝐹 ) · - 1 ) = ( - 1 · - 1 ) ) |
| 64 | neg1mulneg1e1 | ⊢ ( - 1 · - 1 ) = 1 | |
| 65 | 63 64 | eqtrdi | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( ( pmSgn ‘ 𝐷 ) ‘ ◡ 𝐹 ) · - 1 ) = 1 ) |
| 66 | 49 56 65 | 3eqtrd | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) = 1 ) |
| 67 | 1 2 14 | psgnevpmb | ⊢ ( 𝐷 ∈ Fin → ( ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ∈ ( pmEven ‘ 𝐷 ) ↔ ( ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ∈ 𝑃 ∧ ( ( pmSgn ‘ 𝐷 ) ‘ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) = 1 ) ) ) |
| 68 | 67 | ad2antrr | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ∈ ( pmEven ‘ 𝐷 ) ↔ ( ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ∈ 𝑃 ∧ ( ( pmSgn ‘ 𝐷 ) ‘ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) = 1 ) ) ) |
| 69 | 46 66 68 | mpbir2and | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ∈ ( pmEven ‘ 𝐷 ) ) |
| 70 | 69 | fmpttd | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) : ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ⟶ ( pmEven ‘ 𝐷 ) ) |
| 71 | eqidd | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) = ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ) | |
| 72 | eqidd | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) = ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ) | |
| 73 | oveq2 | ⊢ ( 𝑔 = ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) = ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ) | |
| 74 | 36 71 72 73 | fmptco | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ∘ ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ) = ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ) ) |
| 75 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 76 | 2 11 75 39 | grplinv | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝐹 ∈ 𝑃 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝐹 ) = ( 0g ‘ 𝑆 ) ) |
| 77 | 5 7 76 | syl2anc | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝐹 ) = ( 0g ‘ 𝑆 ) ) |
| 78 | 77 | oveq1d | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝐹 ) ( +g ‘ 𝑆 ) 𝑓 ) = ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑓 ) ) |
| 79 | 41 | adantr | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ∈ 𝑃 ) |
| 80 | 2 11 | grpass | ⊢ ( ( 𝑆 ∈ Grp ∧ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ∈ 𝑃 ∧ 𝐹 ∈ 𝑃 ∧ 𝑓 ∈ 𝑃 ) ) → ( ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝐹 ) ( +g ‘ 𝑆 ) 𝑓 ) = ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ) |
| 81 | 5 79 7 10 80 | syl13anc | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝐹 ) ( +g ‘ 𝑆 ) 𝑓 ) = ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ) |
| 82 | 2 11 75 | grplid | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑓 ∈ 𝑃 ) → ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑓 ) = 𝑓 ) |
| 83 | 5 10 82 | syl2anc | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑓 ) = 𝑓 ) |
| 84 | 78 81 83 | 3eqtr3d | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) = 𝑓 ) |
| 85 | 84 | mpteq2dva | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ) = ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ 𝑓 ) ) |
| 86 | 74 85 | eqtrd | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ∘ ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ) = ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ 𝑓 ) ) |
| 87 | mptresid | ⊢ ( I ↾ ( pmEven ‘ 𝐷 ) ) = ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ 𝑓 ) | |
| 88 | 86 87 | eqtr4di | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ∘ ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ) = ( I ↾ ( pmEven ‘ 𝐷 ) ) ) |
| 89 | oveq2 | ⊢ ( 𝑓 = ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) → ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) = ( 𝐹 ( +g ‘ 𝑆 ) ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ) | |
| 90 | 69 72 71 89 | fmptco | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ∘ ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ) = ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ) ) |
| 91 | 2 11 75 39 | grprinv | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝐹 ∈ 𝑃 ) → ( 𝐹 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) = ( 0g ‘ 𝑆 ) ) |
| 92 | 4 6 91 | syl2an | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝐹 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) = ( 0g ‘ 𝑆 ) ) |
| 93 | 92 | oveq1d | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( 𝐹 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) ( +g ‘ 𝑆 ) 𝑔 ) = ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑔 ) ) |
| 94 | 93 | adantr | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( 𝐹 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) ( +g ‘ 𝑆 ) 𝑔 ) = ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑔 ) ) |
| 95 | 2 11 | grpass | ⊢ ( ( 𝑆 ∈ Grp ∧ ( 𝐹 ∈ 𝑃 ∧ ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ∈ 𝑃 ∧ 𝑔 ∈ 𝑃 ) ) → ( ( 𝐹 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) ( +g ‘ 𝑆 ) 𝑔 ) = ( 𝐹 ( +g ‘ 𝑆 ) ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ) |
| 96 | 38 58 42 44 95 | syl13anc | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( 𝐹 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) ( +g ‘ 𝑆 ) 𝑔 ) = ( 𝐹 ( +g ‘ 𝑆 ) ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ) |
| 97 | 2 11 75 | grplid | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑔 ∈ 𝑃 ) → ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑔 ) = 𝑔 ) |
| 98 | 38 44 97 | syl2anc | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑔 ) = 𝑔 ) |
| 99 | 94 96 98 | 3eqtr3d | ⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝐹 ( +g ‘ 𝑆 ) ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) = 𝑔 ) |
| 100 | 99 | mpteq2dva | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ) = ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ 𝑔 ) ) |
| 101 | 90 100 | eqtrd | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ∘ ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ) = ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ 𝑔 ) ) |
| 102 | mptresid | ⊢ ( I ↾ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) = ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ 𝑔 ) | |
| 103 | 101 102 | eqtr4di | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ∘ ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ) = ( I ↾ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ) |
| 104 | 37 70 88 103 | fcof1od | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) : ( pmEven ‘ 𝐷 ) –1-1-onto→ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) |