This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A permutation which is odd (i.e. not even) has sign -1. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evpmss.s | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | |
| evpmss.p | ⊢ 𝑃 = ( Base ‘ 𝑆 ) | ||
| psgnevpmb.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | ||
| Assertion | psgnodpm | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝑁 ‘ 𝐹 ) = - 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evpmss.s | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | |
| 2 | evpmss.p | ⊢ 𝑃 = ( Base ‘ 𝑆 ) | |
| 3 | psgnevpmb.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | |
| 4 | eldif | ⊢ ( 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↔ ( 𝐹 ∈ 𝑃 ∧ ¬ 𝐹 ∈ ( pmEven ‘ 𝐷 ) ) ) | |
| 5 | simpr | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → 𝐹 ∈ 𝑃 ) | |
| 6 | 5 | a1d | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( 𝑁 ‘ 𝐹 ) = 1 → 𝐹 ∈ 𝑃 ) ) |
| 7 | 6 | ancrd | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( 𝑁 ‘ 𝐹 ) = 1 → ( 𝐹 ∈ 𝑃 ∧ ( 𝑁 ‘ 𝐹 ) = 1 ) ) ) |
| 8 | 1 2 3 | psgnevpmb | ⊢ ( 𝐷 ∈ Fin → ( 𝐹 ∈ ( pmEven ‘ 𝐷 ) ↔ ( 𝐹 ∈ 𝑃 ∧ ( 𝑁 ‘ 𝐹 ) = 1 ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 𝐹 ∈ ( pmEven ‘ 𝐷 ) ↔ ( 𝐹 ∈ 𝑃 ∧ ( 𝑁 ‘ 𝐹 ) = 1 ) ) ) |
| 10 | 7 9 | sylibrd | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( 𝑁 ‘ 𝐹 ) = 1 → 𝐹 ∈ ( pmEven ‘ 𝐷 ) ) ) |
| 11 | 10 | con3d | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ¬ 𝐹 ∈ ( pmEven ‘ 𝐷 ) → ¬ ( 𝑁 ‘ 𝐹 ) = 1 ) ) |
| 12 | 11 | impr | ⊢ ( ( 𝐷 ∈ Fin ∧ ( 𝐹 ∈ 𝑃 ∧ ¬ 𝐹 ∈ ( pmEven ‘ 𝐷 ) ) ) → ¬ ( 𝑁 ‘ 𝐹 ) = 1 ) |
| 13 | 4 12 | sylan2b | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ¬ ( 𝑁 ‘ 𝐹 ) = 1 ) |
| 14 | eqid | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) | |
| 15 | 1 3 14 | psgnghm2 | ⊢ ( 𝐷 ∈ Fin → 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 17 | 14 | cnmsgnbas | ⊢ { 1 , - 1 } = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) |
| 18 | 2 17 | ghmf | ⊢ ( 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → 𝑁 : 𝑃 ⟶ { 1 , - 1 } ) |
| 19 | 16 18 | syl | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → 𝑁 : 𝑃 ⟶ { 1 , - 1 } ) |
| 20 | eldifi | ⊢ ( 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) → 𝐹 ∈ 𝑃 ) | |
| 21 | 20 | adantl | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → 𝐹 ∈ 𝑃 ) |
| 22 | 19 21 | ffvelcdmd | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝑁 ‘ 𝐹 ) ∈ { 1 , - 1 } ) |
| 23 | fvex | ⊢ ( 𝑁 ‘ 𝐹 ) ∈ V | |
| 24 | 23 | elpr | ⊢ ( ( 𝑁 ‘ 𝐹 ) ∈ { 1 , - 1 } ↔ ( ( 𝑁 ‘ 𝐹 ) = 1 ∨ ( 𝑁 ‘ 𝐹 ) = - 1 ) ) |
| 25 | 22 24 | sylib | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( 𝑁 ‘ 𝐹 ) = 1 ∨ ( 𝑁 ‘ 𝐹 ) = - 1 ) ) |
| 26 | orel1 | ⊢ ( ¬ ( 𝑁 ‘ 𝐹 ) = 1 → ( ( ( 𝑁 ‘ 𝐹 ) = 1 ∨ ( 𝑁 ‘ 𝐹 ) = - 1 ) → ( 𝑁 ‘ 𝐹 ) = - 1 ) ) | |
| 27 | 13 25 26 | sylc | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝑁 ‘ 𝐹 ) = - 1 ) |