This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is bijective if a "retraction" and a "section" exist, see comments for fcof1 and fcofo . Formerly part of proof of fcof1o . (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by AV, 15-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fcof1od.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| fcof1od.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) | ||
| fcof1od.a | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) | ||
| fcof1od.b | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ) | ||
| Assertion | fcof1od | ⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcof1od.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | fcof1od.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) | |
| 3 | fcof1od.a | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) | |
| 4 | fcof1od.b | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ) | |
| 5 | fcof1 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) | |
| 6 | 1 3 5 | syl2anc | ⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 7 | fcofo | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ) → 𝐹 : 𝐴 –onto→ 𝐵 ) | |
| 8 | 1 2 4 7 | syl3anc | ⊢ ( 𝜑 → 𝐹 : 𝐴 –onto→ 𝐵 ) |
| 9 | df-f1o | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ) | |
| 10 | 6 8 9 | sylanbrc | ⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |