This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Even permutations are permutations. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evpmss.s | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | |
| evpmss.p | ⊢ 𝑃 = ( Base ‘ 𝑆 ) | ||
| Assertion | evpmss | ⊢ ( pmEven ‘ 𝐷 ) ⊆ 𝑃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evpmss.s | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | |
| 2 | evpmss.p | ⊢ 𝑃 = ( Base ‘ 𝑆 ) | |
| 3 | fveq2 | ⊢ ( 𝑑 = 𝐷 → ( pmSgn ‘ 𝑑 ) = ( pmSgn ‘ 𝐷 ) ) | |
| 4 | 3 | cnveqd | ⊢ ( 𝑑 = 𝐷 → ◡ ( pmSgn ‘ 𝑑 ) = ◡ ( pmSgn ‘ 𝐷 ) ) |
| 5 | 4 | imaeq1d | ⊢ ( 𝑑 = 𝐷 → ( ◡ ( pmSgn ‘ 𝑑 ) “ { 1 } ) = ( ◡ ( pmSgn ‘ 𝐷 ) “ { 1 } ) ) |
| 6 | df-evpm | ⊢ pmEven = ( 𝑑 ∈ V ↦ ( ◡ ( pmSgn ‘ 𝑑 ) “ { 1 } ) ) | |
| 7 | fvex | ⊢ ( pmSgn ‘ 𝐷 ) ∈ V | |
| 8 | 7 | cnvex | ⊢ ◡ ( pmSgn ‘ 𝐷 ) ∈ V |
| 9 | 8 | imaex | ⊢ ( ◡ ( pmSgn ‘ 𝐷 ) “ { 1 } ) ∈ V |
| 10 | 5 6 9 | fvmpt | ⊢ ( 𝐷 ∈ V → ( pmEven ‘ 𝐷 ) = ( ◡ ( pmSgn ‘ 𝐷 ) “ { 1 } ) ) |
| 11 | cnvimass | ⊢ ( ◡ ( pmSgn ‘ 𝐷 ) “ { 1 } ) ⊆ dom ( pmSgn ‘ 𝐷 ) | |
| 12 | eqid | ⊢ ( pmSgn ‘ 𝐷 ) = ( pmSgn ‘ 𝐷 ) | |
| 13 | eqid | ⊢ ( 𝑆 ↾s dom ( pmSgn ‘ 𝐷 ) ) = ( 𝑆 ↾s dom ( pmSgn ‘ 𝐷 ) ) | |
| 14 | eqid | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) | |
| 15 | 1 12 13 14 | psgnghm | ⊢ ( 𝐷 ∈ V → ( pmSgn ‘ 𝐷 ) ∈ ( ( 𝑆 ↾s dom ( pmSgn ‘ 𝐷 ) ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 16 | eqid | ⊢ ( Base ‘ ( 𝑆 ↾s dom ( pmSgn ‘ 𝐷 ) ) ) = ( Base ‘ ( 𝑆 ↾s dom ( pmSgn ‘ 𝐷 ) ) ) | |
| 17 | eqid | ⊢ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) | |
| 18 | 16 17 | ghmf | ⊢ ( ( pmSgn ‘ 𝐷 ) ∈ ( ( 𝑆 ↾s dom ( pmSgn ‘ 𝐷 ) ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → ( pmSgn ‘ 𝐷 ) : ( Base ‘ ( 𝑆 ↾s dom ( pmSgn ‘ 𝐷 ) ) ) ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 19 | fdm | ⊢ ( ( pmSgn ‘ 𝐷 ) : ( Base ‘ ( 𝑆 ↾s dom ( pmSgn ‘ 𝐷 ) ) ) ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → dom ( pmSgn ‘ 𝐷 ) = ( Base ‘ ( 𝑆 ↾s dom ( pmSgn ‘ 𝐷 ) ) ) ) | |
| 20 | 15 18 19 | 3syl | ⊢ ( 𝐷 ∈ V → dom ( pmSgn ‘ 𝐷 ) = ( Base ‘ ( 𝑆 ↾s dom ( pmSgn ‘ 𝐷 ) ) ) ) |
| 21 | 13 2 | ressbasss | ⊢ ( Base ‘ ( 𝑆 ↾s dom ( pmSgn ‘ 𝐷 ) ) ) ⊆ 𝑃 |
| 22 | 20 21 | eqsstrdi | ⊢ ( 𝐷 ∈ V → dom ( pmSgn ‘ 𝐷 ) ⊆ 𝑃 ) |
| 23 | 11 22 | sstrid | ⊢ ( 𝐷 ∈ V → ( ◡ ( pmSgn ‘ 𝐷 ) “ { 1 } ) ⊆ 𝑃 ) |
| 24 | 10 23 | eqsstrd | ⊢ ( 𝐷 ∈ V → ( pmEven ‘ 𝐷 ) ⊆ 𝑃 ) |
| 25 | fvprc | ⊢ ( ¬ 𝐷 ∈ V → ( pmEven ‘ 𝐷 ) = ∅ ) | |
| 26 | 0ss | ⊢ ∅ ⊆ 𝑃 | |
| 27 | 25 26 | eqsstrdi | ⊢ ( ¬ 𝐷 ∈ V → ( pmEven ‘ 𝐷 ) ⊆ 𝑃 ) |
| 28 | 24 27 | pm2.61i | ⊢ ( pmEven ‘ 𝐷 ) ⊆ 𝑃 |