This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sign is a homomorphism from the finite symmetric group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnghm2.s | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | |
| psgnghm2.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | ||
| psgnghm2.u | ⊢ 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) | ||
| Assertion | psgnghm2 | ⊢ ( 𝐷 ∈ Fin → 𝑁 ∈ ( 𝑆 GrpHom 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnghm2.s | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | |
| 2 | psgnghm2.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | |
| 3 | psgnghm2.u | ⊢ 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) | |
| 4 | eqid | ⊢ ( 𝑆 ↾s dom 𝑁 ) = ( 𝑆 ↾s dom 𝑁 ) | |
| 5 | 1 2 4 3 | psgnghm | ⊢ ( 𝐷 ∈ Fin → 𝑁 ∈ ( ( 𝑆 ↾s dom 𝑁 ) GrpHom 𝑈 ) ) |
| 6 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 7 | 1 6 | sygbasnfpfi | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → dom ( 𝑥 ∖ I ) ∈ Fin ) |
| 8 | 7 | ralrimiva | ⊢ ( 𝐷 ∈ Fin → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) dom ( 𝑥 ∖ I ) ∈ Fin ) |
| 9 | rabid2 | ⊢ ( ( Base ‘ 𝑆 ) = { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) dom ( 𝑥 ∖ I ) ∈ Fin ) | |
| 10 | 8 9 | sylibr | ⊢ ( 𝐷 ∈ Fin → ( Base ‘ 𝑆 ) = { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) |
| 11 | eqid | ⊢ { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } = { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } | |
| 12 | 1 6 11 2 | psgnfn | ⊢ 𝑁 Fn { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } |
| 13 | 12 | fndmi | ⊢ dom 𝑁 = { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } |
| 14 | 10 13 | eqtr4di | ⊢ ( 𝐷 ∈ Fin → ( Base ‘ 𝑆 ) = dom 𝑁 ) |
| 15 | eqimss | ⊢ ( ( Base ‘ 𝑆 ) = dom 𝑁 → ( Base ‘ 𝑆 ) ⊆ dom 𝑁 ) | |
| 16 | 1 | fvexi | ⊢ 𝑆 ∈ V |
| 17 | 2 | fvexi | ⊢ 𝑁 ∈ V |
| 18 | 17 | dmex | ⊢ dom 𝑁 ∈ V |
| 19 | 4 6 | ressid2 | ⊢ ( ( ( Base ‘ 𝑆 ) ⊆ dom 𝑁 ∧ 𝑆 ∈ V ∧ dom 𝑁 ∈ V ) → ( 𝑆 ↾s dom 𝑁 ) = 𝑆 ) |
| 20 | 16 18 19 | mp3an23 | ⊢ ( ( Base ‘ 𝑆 ) ⊆ dom 𝑁 → ( 𝑆 ↾s dom 𝑁 ) = 𝑆 ) |
| 21 | 14 15 20 | 3syl | ⊢ ( 𝐷 ∈ Fin → ( 𝑆 ↾s dom 𝑁 ) = 𝑆 ) |
| 22 | 21 | oveq1d | ⊢ ( 𝐷 ∈ Fin → ( ( 𝑆 ↾s dom 𝑁 ) GrpHom 𝑈 ) = ( 𝑆 GrpHom 𝑈 ) ) |
| 23 | 5 22 | eleqtrd | ⊢ ( 𝐷 ∈ Fin → 𝑁 ∈ ( 𝑆 GrpHom 𝑈 ) ) |