This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is an even permutation if it is a permutation with sign 1. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evpmss.s | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | |
| evpmss.p | ⊢ 𝑃 = ( Base ‘ 𝑆 ) | ||
| psgnevpmb.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | ||
| Assertion | psgnevpmb | ⊢ ( 𝐷 ∈ Fin → ( 𝐹 ∈ ( pmEven ‘ 𝐷 ) ↔ ( 𝐹 ∈ 𝑃 ∧ ( 𝑁 ‘ 𝐹 ) = 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evpmss.s | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | |
| 2 | evpmss.p | ⊢ 𝑃 = ( Base ‘ 𝑆 ) | |
| 3 | psgnevpmb.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | |
| 4 | elex | ⊢ ( 𝐷 ∈ Fin → 𝐷 ∈ V ) | |
| 5 | fveq2 | ⊢ ( 𝑑 = 𝐷 → ( pmSgn ‘ 𝑑 ) = ( pmSgn ‘ 𝐷 ) ) | |
| 6 | 5 3 | eqtr4di | ⊢ ( 𝑑 = 𝐷 → ( pmSgn ‘ 𝑑 ) = 𝑁 ) |
| 7 | 6 | cnveqd | ⊢ ( 𝑑 = 𝐷 → ◡ ( pmSgn ‘ 𝑑 ) = ◡ 𝑁 ) |
| 8 | 7 | imaeq1d | ⊢ ( 𝑑 = 𝐷 → ( ◡ ( pmSgn ‘ 𝑑 ) “ { 1 } ) = ( ◡ 𝑁 “ { 1 } ) ) |
| 9 | df-evpm | ⊢ pmEven = ( 𝑑 ∈ V ↦ ( ◡ ( pmSgn ‘ 𝑑 ) “ { 1 } ) ) | |
| 10 | 3 | fvexi | ⊢ 𝑁 ∈ V |
| 11 | 10 | cnvex | ⊢ ◡ 𝑁 ∈ V |
| 12 | 11 | imaex | ⊢ ( ◡ 𝑁 “ { 1 } ) ∈ V |
| 13 | 8 9 12 | fvmpt | ⊢ ( 𝐷 ∈ V → ( pmEven ‘ 𝐷 ) = ( ◡ 𝑁 “ { 1 } ) ) |
| 14 | 4 13 | syl | ⊢ ( 𝐷 ∈ Fin → ( pmEven ‘ 𝐷 ) = ( ◡ 𝑁 “ { 1 } ) ) |
| 15 | 14 | eleq2d | ⊢ ( 𝐷 ∈ Fin → ( 𝐹 ∈ ( pmEven ‘ 𝐷 ) ↔ 𝐹 ∈ ( ◡ 𝑁 “ { 1 } ) ) ) |
| 16 | eqid | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) | |
| 17 | 1 3 16 | psgnghm2 | ⊢ ( 𝐷 ∈ Fin → 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 18 | eqid | ⊢ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) | |
| 19 | 2 18 | ghmf | ⊢ ( 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → 𝑁 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 20 | ffn | ⊢ ( 𝑁 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → 𝑁 Fn 𝑃 ) | |
| 21 | fniniseg | ⊢ ( 𝑁 Fn 𝑃 → ( 𝐹 ∈ ( ◡ 𝑁 “ { 1 } ) ↔ ( 𝐹 ∈ 𝑃 ∧ ( 𝑁 ‘ 𝐹 ) = 1 ) ) ) | |
| 22 | 17 19 20 21 | 4syl | ⊢ ( 𝐷 ∈ Fin → ( 𝐹 ∈ ( ◡ 𝑁 “ { 1 } ) ↔ ( 𝐹 ∈ 𝑃 ∧ ( 𝑁 ‘ 𝐹 ) = 1 ) ) ) |
| 23 | 15 22 | bitrd | ⊢ ( 𝐷 ∈ Fin → ( 𝐹 ∈ ( pmEven ‘ 𝐷 ) ↔ ( 𝐹 ∈ 𝑃 ∧ ( 𝑁 ‘ 𝐹 ) = 1 ) ) ) |