This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sign of a permutation equals the sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgninv.s | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | |
| psgninv.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | ||
| psgninv.p | ⊢ 𝑃 = ( Base ‘ 𝑆 ) | ||
| Assertion | psgninv | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 𝑁 ‘ ◡ 𝐹 ) = ( 𝑁 ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgninv.s | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | |
| 2 | psgninv.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | |
| 3 | psgninv.p | ⊢ 𝑃 = ( Base ‘ 𝑆 ) | |
| 4 | eqid | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) | |
| 5 | 1 2 4 | psgnghm2 | ⊢ ( 𝐷 ∈ Fin → 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 6 | eqid | ⊢ ( invg ‘ 𝑆 ) = ( invg ‘ 𝑆 ) | |
| 7 | eqid | ⊢ ( invg ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) = ( invg ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) | |
| 8 | 3 6 7 | ghminv | ⊢ ( ( 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ∧ 𝐹 ∈ 𝑃 ) → ( 𝑁 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) = ( ( invg ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ‘ ( 𝑁 ‘ 𝐹 ) ) ) |
| 9 | 5 8 | sylan | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 𝑁 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) = ( ( invg ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ‘ ( 𝑁 ‘ 𝐹 ) ) ) |
| 10 | 1 3 6 | symginv | ⊢ ( 𝐹 ∈ 𝑃 → ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) = ◡ 𝐹 ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) = ◡ 𝐹 ) |
| 12 | 11 | fveq2d | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 𝑁 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) = ( 𝑁 ‘ ◡ 𝐹 ) ) |
| 13 | eqid | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) | |
| 14 | 13 | cnmsgnsubg | ⊢ { 1 , - 1 } ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) |
| 15 | 4 | cnmsgnbas | ⊢ { 1 , - 1 } = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) |
| 16 | 3 15 | ghmf | ⊢ ( 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → 𝑁 : 𝑃 ⟶ { 1 , - 1 } ) |
| 17 | 5 16 | syl | ⊢ ( 𝐷 ∈ Fin → 𝑁 : 𝑃 ⟶ { 1 , - 1 } ) |
| 18 | 17 | ffvelcdmda | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 𝑁 ‘ 𝐹 ) ∈ { 1 , - 1 } ) |
| 19 | cnex | ⊢ ℂ ∈ V | |
| 20 | 19 | difexi | ⊢ ( ℂ ∖ { 0 } ) ∈ V |
| 21 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 22 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 23 | eldifsn | ⊢ ( 1 ∈ ( ℂ ∖ { 0 } ) ↔ ( 1 ∈ ℂ ∧ 1 ≠ 0 ) ) | |
| 24 | 21 22 23 | mpbir2an | ⊢ 1 ∈ ( ℂ ∖ { 0 } ) |
| 25 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 26 | neg1ne0 | ⊢ - 1 ≠ 0 | |
| 27 | eldifsn | ⊢ ( - 1 ∈ ( ℂ ∖ { 0 } ) ↔ ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) ) | |
| 28 | 25 26 27 | mpbir2an | ⊢ - 1 ∈ ( ℂ ∖ { 0 } ) |
| 29 | prssi | ⊢ ( ( 1 ∈ ( ℂ ∖ { 0 } ) ∧ - 1 ∈ ( ℂ ∖ { 0 } ) ) → { 1 , - 1 } ⊆ ( ℂ ∖ { 0 } ) ) | |
| 30 | 24 28 29 | mp2an | ⊢ { 1 , - 1 } ⊆ ( ℂ ∖ { 0 } ) |
| 31 | ressabs | ⊢ ( ( ( ℂ ∖ { 0 } ) ∈ V ∧ { 1 , - 1 } ⊆ ( ℂ ∖ { 0 } ) ) → ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) | |
| 32 | 20 30 31 | mp2an | ⊢ ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) |
| 33 | 32 | eqcomi | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s { 1 , - 1 } ) |
| 34 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 35 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 36 | cndrng | ⊢ ℂfld ∈ DivRing | |
| 37 | 34 35 36 | drngui | ⊢ ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld ) |
| 38 | eqid | ⊢ ( invr ‘ ℂfld ) = ( invr ‘ ℂfld ) | |
| 39 | 37 13 38 | invrfval | ⊢ ( invr ‘ ℂfld ) = ( invg ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) |
| 40 | 33 39 7 | subginv | ⊢ ( ( { 1 , - 1 } ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ { 1 , - 1 } ) → ( ( invr ‘ ℂfld ) ‘ ( 𝑁 ‘ 𝐹 ) ) = ( ( invg ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ‘ ( 𝑁 ‘ 𝐹 ) ) ) |
| 41 | 14 18 40 | sylancr | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( invr ‘ ℂfld ) ‘ ( 𝑁 ‘ 𝐹 ) ) = ( ( invg ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ‘ ( 𝑁 ‘ 𝐹 ) ) ) |
| 42 | 30 18 | sselid | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 𝑁 ‘ 𝐹 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 43 | eldifsn | ⊢ ( ( 𝑁 ‘ 𝐹 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝑁 ‘ 𝐹 ) ∈ ℂ ∧ ( 𝑁 ‘ 𝐹 ) ≠ 0 ) ) | |
| 44 | 42 43 | sylib | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( 𝑁 ‘ 𝐹 ) ∈ ℂ ∧ ( 𝑁 ‘ 𝐹 ) ≠ 0 ) ) |
| 45 | cnfldinv | ⊢ ( ( ( 𝑁 ‘ 𝐹 ) ∈ ℂ ∧ ( 𝑁 ‘ 𝐹 ) ≠ 0 ) → ( ( invr ‘ ℂfld ) ‘ ( 𝑁 ‘ 𝐹 ) ) = ( 1 / ( 𝑁 ‘ 𝐹 ) ) ) | |
| 46 | 44 45 | syl | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( invr ‘ ℂfld ) ‘ ( 𝑁 ‘ 𝐹 ) ) = ( 1 / ( 𝑁 ‘ 𝐹 ) ) ) |
| 47 | 41 46 | eqtr3d | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( invg ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ‘ ( 𝑁 ‘ 𝐹 ) ) = ( 1 / ( 𝑁 ‘ 𝐹 ) ) ) |
| 48 | 9 12 47 | 3eqtr3d | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 𝑁 ‘ ◡ 𝐹 ) = ( 1 / ( 𝑁 ‘ 𝐹 ) ) ) |
| 49 | fvex | ⊢ ( 𝑁 ‘ 𝐹 ) ∈ V | |
| 50 | 49 | elpr | ⊢ ( ( 𝑁 ‘ 𝐹 ) ∈ { 1 , - 1 } ↔ ( ( 𝑁 ‘ 𝐹 ) = 1 ∨ ( 𝑁 ‘ 𝐹 ) = - 1 ) ) |
| 51 | 1div1e1 | ⊢ ( 1 / 1 ) = 1 | |
| 52 | oveq2 | ⊢ ( ( 𝑁 ‘ 𝐹 ) = 1 → ( 1 / ( 𝑁 ‘ 𝐹 ) ) = ( 1 / 1 ) ) | |
| 53 | id | ⊢ ( ( 𝑁 ‘ 𝐹 ) = 1 → ( 𝑁 ‘ 𝐹 ) = 1 ) | |
| 54 | 51 52 53 | 3eqtr4a | ⊢ ( ( 𝑁 ‘ 𝐹 ) = 1 → ( 1 / ( 𝑁 ‘ 𝐹 ) ) = ( 𝑁 ‘ 𝐹 ) ) |
| 55 | divneg2 | ⊢ ( ( 1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0 ) → - ( 1 / 1 ) = ( 1 / - 1 ) ) | |
| 56 | 21 21 22 55 | mp3an | ⊢ - ( 1 / 1 ) = ( 1 / - 1 ) |
| 57 | 51 | negeqi | ⊢ - ( 1 / 1 ) = - 1 |
| 58 | 56 57 | eqtr3i | ⊢ ( 1 / - 1 ) = - 1 |
| 59 | oveq2 | ⊢ ( ( 𝑁 ‘ 𝐹 ) = - 1 → ( 1 / ( 𝑁 ‘ 𝐹 ) ) = ( 1 / - 1 ) ) | |
| 60 | id | ⊢ ( ( 𝑁 ‘ 𝐹 ) = - 1 → ( 𝑁 ‘ 𝐹 ) = - 1 ) | |
| 61 | 58 59 60 | 3eqtr4a | ⊢ ( ( 𝑁 ‘ 𝐹 ) = - 1 → ( 1 / ( 𝑁 ‘ 𝐹 ) ) = ( 𝑁 ‘ 𝐹 ) ) |
| 62 | 54 61 | jaoi | ⊢ ( ( ( 𝑁 ‘ 𝐹 ) = 1 ∨ ( 𝑁 ‘ 𝐹 ) = - 1 ) → ( 1 / ( 𝑁 ‘ 𝐹 ) ) = ( 𝑁 ‘ 𝐹 ) ) |
| 63 | 50 62 | sylbi | ⊢ ( ( 𝑁 ‘ 𝐹 ) ∈ { 1 , - 1 } → ( 1 / ( 𝑁 ‘ 𝐹 ) ) = ( 𝑁 ‘ 𝐹 ) ) |
| 64 | 18 63 | syl | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 1 / ( 𝑁 ‘ 𝐹 ) ) = ( 𝑁 ‘ 𝐹 ) ) |
| 65 | 48 64 | eqtrd | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 𝑁 ‘ ◡ 𝐹 ) = ( 𝑁 ‘ 𝐹 ) ) |