This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transposition is an odd permutation. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evpmodpmf1o.s | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | |
| evpmodpmf1o.p | ⊢ 𝑃 = ( Base ‘ 𝑆 ) | ||
| pmtrodpm.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | ||
| Assertion | pmtrodpm | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑇 ) → 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evpmodpmf1o.s | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | |
| 2 | evpmodpmf1o.p | ⊢ 𝑃 = ( Base ‘ 𝑆 ) | |
| 3 | pmtrodpm.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| 4 | simpl | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑇 ) → 𝐷 ∈ Fin ) | |
| 5 | 3 1 2 | symgtrf | ⊢ 𝑇 ⊆ 𝑃 |
| 6 | 5 | sseli | ⊢ ( 𝐹 ∈ 𝑇 → 𝐹 ∈ 𝑃 ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑇 ) → 𝐹 ∈ 𝑃 ) |
| 8 | eqid | ⊢ ( pmSgn ‘ 𝐷 ) = ( pmSgn ‘ 𝐷 ) | |
| 9 | 1 3 8 | psgnpmtr | ⊢ ( 𝐹 ∈ 𝑇 → ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) = - 1 ) |
| 10 | 9 | adantl | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑇 ) → ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) = - 1 ) |
| 11 | 1 2 8 | psgnodpmr | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) = - 1 ) → 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) |
| 12 | 4 7 10 11 | syl3anc | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑇 ) → 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) |