This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for a bag of variables. EDITORIAL: This theorem should stay in my mathbox until there's another use, since .0. and .1. using U instead of S may not be convenient. (Contributed by SN, 29-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsbagval.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| evlsbagval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) | ||
| evlsbagval.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evlsbagval.w | ⊢ 𝑊 = ( Base ‘ 𝑃 ) | ||
| evlsbagval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| evlsbagval.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑆 ) | ||
| evlsbagval.e | ⊢ ↑ = ( .g ‘ 𝑀 ) | ||
| evlsbagval.z | ⊢ 0 = ( 0g ‘ 𝑈 ) | ||
| evlsbagval.o | ⊢ 1 = ( 1r ‘ 𝑈 ) | ||
| evlsbagval.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| evlsbagval.f | ⊢ 𝐹 = ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝐵 , 1 , 0 ) ) | ||
| evlsbagval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| evlsbagval.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlsbagval.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evlsbagval.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | ||
| evlsbagval.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | ||
| Assertion | evlsbagval | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑊 ∧ ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 ) = ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsbagval.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 2 | evlsbagval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) | |
| 3 | evlsbagval.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 4 | evlsbagval.w | ⊢ 𝑊 = ( Base ‘ 𝑃 ) | |
| 5 | evlsbagval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 6 | evlsbagval.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑆 ) | |
| 7 | evlsbagval.e | ⊢ ↑ = ( .g ‘ 𝑀 ) | |
| 8 | evlsbagval.z | ⊢ 0 = ( 0g ‘ 𝑈 ) | |
| 9 | evlsbagval.o | ⊢ 1 = ( 1r ‘ 𝑈 ) | |
| 10 | evlsbagval.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 11 | evlsbagval.f | ⊢ 𝐹 = ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝐵 , 1 , 0 ) ) | |
| 12 | evlsbagval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 13 | evlsbagval.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 14 | evlsbagval.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 15 | evlsbagval.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | |
| 16 | evlsbagval.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | |
| 17 | fvexd | ⊢ ( 𝜑 → ( Base ‘ 𝑈 ) ∈ V ) | |
| 18 | ovexd | ⊢ ( 𝜑 → ( ℕ0 ↑m 𝐼 ) ∈ V ) | |
| 19 | 10 18 | rabexd | ⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 20 | 3 | subrgring | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
| 21 | 14 20 | syl | ⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
| 22 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 23 | 22 9 | ringidcl | ⊢ ( 𝑈 ∈ Ring → 1 ∈ ( Base ‘ 𝑈 ) ) |
| 24 | 21 23 | syl | ⊢ ( 𝜑 → 1 ∈ ( Base ‘ 𝑈 ) ) |
| 25 | 22 8 | ring0cl | ⊢ ( 𝑈 ∈ Ring → 0 ∈ ( Base ‘ 𝑈 ) ) |
| 26 | 21 25 | syl | ⊢ ( 𝜑 → 0 ∈ ( Base ‘ 𝑈 ) ) |
| 27 | 24 26 | ifcld | ⊢ ( 𝜑 → if ( 𝑠 = 𝐵 , 1 , 0 ) ∈ ( Base ‘ 𝑈 ) ) |
| 28 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐷 ) → if ( 𝑠 = 𝐵 , 1 , 0 ) ∈ ( Base ‘ 𝑈 ) ) |
| 29 | 28 11 | fmptd | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ( Base ‘ 𝑈 ) ) |
| 30 | 17 19 29 | elmapdd | ⊢ ( 𝜑 → 𝐹 ∈ ( ( Base ‘ 𝑈 ) ↑m 𝐷 ) ) |
| 31 | eqid | ⊢ ( 𝐼 mPwSer 𝑈 ) = ( 𝐼 mPwSer 𝑈 ) | |
| 32 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) | |
| 33 | 31 22 10 32 12 | psrbas | ⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) = ( ( Base ‘ 𝑈 ) ↑m 𝐷 ) ) |
| 34 | 30 33 | eleqtrrd | ⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) ) |
| 35 | 19 26 11 | sniffsupp | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
| 36 | 2 31 32 8 4 | mplelbas | ⊢ ( 𝐹 ∈ 𝑊 ↔ ( 𝐹 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) ∧ 𝐹 finSupp 0 ) ) |
| 37 | 34 35 36 | sylanbrc | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) |
| 38 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 39 | 1 2 4 3 10 5 6 7 38 12 13 14 37 15 | evlsvvval | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) ) |
| 40 | 16 | snssd | ⊢ ( 𝜑 → { 𝐵 } ⊆ 𝐷 ) |
| 41 | resmpt | ⊢ ( { 𝐵 } ⊆ 𝐷 → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ↾ { 𝐵 } ) = ( 𝑏 ∈ { 𝐵 } ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) | |
| 42 | 40 41 | syl | ⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ↾ { 𝐵 } ) = ( 𝑏 ∈ { 𝐵 } ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) |
| 43 | 42 | oveq2d | ⊢ ( 𝜑 → ( 𝑆 Σg ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ↾ { 𝐵 } ) ) = ( 𝑆 Σg ( 𝑏 ∈ { 𝐵 } ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) ) |
| 44 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 45 | 13 | crngringd | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 46 | 45 | ringcmnd | ⊢ ( 𝜑 → 𝑆 ∈ CMnd ) |
| 47 | 45 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑆 ∈ Ring ) |
| 48 | 3 | subrgbas | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 49 | 5 | subrgss | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐾 ) |
| 50 | 48 49 | eqsstrrd | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( Base ‘ 𝑈 ) ⊆ 𝐾 ) |
| 51 | 14 50 | syl | ⊢ ( 𝜑 → ( Base ‘ 𝑈 ) ⊆ 𝐾 ) |
| 52 | 29 51 | fssd | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ 𝐾 ) |
| 53 | 52 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝐾 ) |
| 54 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝐼 ∈ 𝑉 ) |
| 55 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑆 ∈ CRing ) |
| 56 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 57 | simpr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑏 ∈ 𝐷 ) | |
| 58 | 10 5 6 7 54 55 56 57 | evlsvvvallem | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ∈ 𝐾 ) |
| 59 | 5 38 47 53 58 | ringcld | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ∈ 𝐾 ) |
| 60 | 59 | fmpttd | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) : 𝐷 ⟶ 𝐾 ) |
| 61 | eldifsnneq | ⊢ ( 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) → ¬ 𝑏 = 𝐵 ) | |
| 62 | 61 | adantl | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ¬ 𝑏 = 𝐵 ) |
| 63 | 62 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → if ( 𝑏 = 𝐵 , 1 , 0 ) = 0 ) |
| 64 | eqeq1 | ⊢ ( 𝑠 = 𝑏 → ( 𝑠 = 𝐵 ↔ 𝑏 = 𝐵 ) ) | |
| 65 | 64 | ifbid | ⊢ ( 𝑠 = 𝑏 → if ( 𝑠 = 𝐵 , 1 , 0 ) = if ( 𝑏 = 𝐵 , 1 , 0 ) ) |
| 66 | eldifi | ⊢ ( 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) → 𝑏 ∈ 𝐷 ) | |
| 67 | 66 | adantl | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → 𝑏 ∈ 𝐷 ) |
| 68 | 9 | fvexi | ⊢ 1 ∈ V |
| 69 | 8 | fvexi | ⊢ 0 ∈ V |
| 70 | 68 69 | ifex | ⊢ if ( 𝑏 = 𝐵 , 1 , 0 ) ∈ V |
| 71 | 70 | a1i | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → if ( 𝑏 = 𝐵 , 1 , 0 ) ∈ V ) |
| 72 | 11 65 67 71 | fvmptd3 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( 𝐹 ‘ 𝑏 ) = if ( 𝑏 = 𝐵 , 1 , 0 ) ) |
| 73 | 3 44 | subrg0 | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
| 74 | 73 8 | eqtr4di | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 0g ‘ 𝑆 ) = 0 ) |
| 75 | 14 74 | syl | ⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = 0 ) |
| 76 | 75 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( 0g ‘ 𝑆 ) = 0 ) |
| 77 | 63 72 76 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( 𝐹 ‘ 𝑏 ) = ( 0g ‘ 𝑆 ) ) |
| 78 | 77 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( ( 0g ‘ 𝑆 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
| 79 | 66 58 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ∈ 𝐾 ) |
| 80 | 5 38 44 | ringlz | ⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ∈ 𝐾 ) → ( ( 0g ‘ 𝑆 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( 0g ‘ 𝑆 ) ) |
| 81 | 45 79 80 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( ( 0g ‘ 𝑆 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( 0g ‘ 𝑆 ) ) |
| 82 | 78 81 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( 0g ‘ 𝑆 ) ) |
| 83 | 82 19 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ { 𝐵 } ) |
| 84 | 10 2 3 4 5 6 7 38 12 13 14 37 15 | evlsvvvallem2 | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
| 85 | 5 44 46 19 60 83 84 | gsumres | ⊢ ( 𝜑 → ( 𝑆 Σg ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ↾ { 𝐵 } ) ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) ) |
| 86 | 13 | crnggrpd | ⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
| 87 | 86 | grpmndd | ⊢ ( 𝜑 → 𝑆 ∈ Mnd ) |
| 88 | 52 16 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ 𝐾 ) |
| 89 | 10 5 6 7 12 13 15 16 | evlsvvvallem | ⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ∈ 𝐾 ) |
| 90 | 5 38 45 88 89 | ringcld | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ∈ 𝐾 ) |
| 91 | fveq2 | ⊢ ( 𝑏 = 𝐵 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 92 | fveq1 | ⊢ ( 𝑏 = 𝐵 → ( 𝑏 ‘ 𝑣 ) = ( 𝐵 ‘ 𝑣 ) ) | |
| 93 | 92 | oveq1d | ⊢ ( 𝑏 = 𝐵 → ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) = ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) |
| 94 | 93 | mpteq2dv | ⊢ ( 𝑏 = 𝐵 → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) = ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) |
| 95 | 94 | oveq2d | ⊢ ( 𝑏 = 𝐵 → ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) = ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) |
| 96 | 91 95 | oveq12d | ⊢ ( 𝑏 = 𝐵 → ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( ( 𝐹 ‘ 𝐵 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
| 97 | 5 96 | gsumsn | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝐵 ∈ 𝐷 ∧ ( ( 𝐹 ‘ 𝐵 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ∈ 𝐾 ) → ( 𝑆 Σg ( 𝑏 ∈ { 𝐵 } ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) = ( ( 𝐹 ‘ 𝐵 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
| 98 | 87 16 90 97 | syl3anc | ⊢ ( 𝜑 → ( 𝑆 Σg ( 𝑏 ∈ { 𝐵 } ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) = ( ( 𝐹 ‘ 𝐵 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
| 99 | iftrue | ⊢ ( 𝑠 = 𝐵 → if ( 𝑠 = 𝐵 , 1 , 0 ) = 1 ) | |
| 100 | 68 | a1i | ⊢ ( 𝜑 → 1 ∈ V ) |
| 101 | 11 99 16 100 | fvmptd3 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) = 1 ) |
| 102 | eqid | ⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) | |
| 103 | 3 102 | subrg1 | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑈 ) ) |
| 104 | 14 103 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑈 ) ) |
| 105 | 9 101 104 | 3eqtr4a | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) = ( 1r ‘ 𝑆 ) ) |
| 106 | 105 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( ( 1r ‘ 𝑆 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
| 107 | 5 38 102 45 89 | ringlidmd | ⊢ ( 𝜑 → ( ( 1r ‘ 𝑆 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) |
| 108 | 98 106 107 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑆 Σg ( 𝑏 ∈ { 𝐵 } ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) = ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) |
| 109 | 43 85 108 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) = ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) |
| 110 | 39 109 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 ) = ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) |
| 111 | 37 110 | jca | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑊 ∧ ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 ) = ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |