This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for a bag of variables. EDITORIAL: This theorem should stay in my mathbox until there's another use, since .0. and .1. using U instead of S may not be convenient. (Contributed by SN, 29-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsbagval.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| evlsbagval.p | |- P = ( I mPoly U ) |
||
| evlsbagval.u | |- U = ( S |`s R ) |
||
| evlsbagval.w | |- W = ( Base ` P ) |
||
| evlsbagval.k | |- K = ( Base ` S ) |
||
| evlsbagval.m | |- M = ( mulGrp ` S ) |
||
| evlsbagval.e | |- .^ = ( .g ` M ) |
||
| evlsbagval.z | |- .0. = ( 0g ` U ) |
||
| evlsbagval.o | |- .1. = ( 1r ` U ) |
||
| evlsbagval.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
| evlsbagval.f | |- F = ( s e. D |-> if ( s = B , .1. , .0. ) ) |
||
| evlsbagval.i | |- ( ph -> I e. V ) |
||
| evlsbagval.s | |- ( ph -> S e. CRing ) |
||
| evlsbagval.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evlsbagval.a | |- ( ph -> A e. ( K ^m I ) ) |
||
| evlsbagval.b | |- ( ph -> B e. D ) |
||
| Assertion | evlsbagval | |- ( ph -> ( F e. W /\ ( ( Q ` F ) ` A ) = ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsbagval.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| 2 | evlsbagval.p | |- P = ( I mPoly U ) |
|
| 3 | evlsbagval.u | |- U = ( S |`s R ) |
|
| 4 | evlsbagval.w | |- W = ( Base ` P ) |
|
| 5 | evlsbagval.k | |- K = ( Base ` S ) |
|
| 6 | evlsbagval.m | |- M = ( mulGrp ` S ) |
|
| 7 | evlsbagval.e | |- .^ = ( .g ` M ) |
|
| 8 | evlsbagval.z | |- .0. = ( 0g ` U ) |
|
| 9 | evlsbagval.o | |- .1. = ( 1r ` U ) |
|
| 10 | evlsbagval.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 11 | evlsbagval.f | |- F = ( s e. D |-> if ( s = B , .1. , .0. ) ) |
|
| 12 | evlsbagval.i | |- ( ph -> I e. V ) |
|
| 13 | evlsbagval.s | |- ( ph -> S e. CRing ) |
|
| 14 | evlsbagval.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 15 | evlsbagval.a | |- ( ph -> A e. ( K ^m I ) ) |
|
| 16 | evlsbagval.b | |- ( ph -> B e. D ) |
|
| 17 | fvexd | |- ( ph -> ( Base ` U ) e. _V ) |
|
| 18 | ovexd | |- ( ph -> ( NN0 ^m I ) e. _V ) |
|
| 19 | 10 18 | rabexd | |- ( ph -> D e. _V ) |
| 20 | 3 | subrgring | |- ( R e. ( SubRing ` S ) -> U e. Ring ) |
| 21 | 14 20 | syl | |- ( ph -> U e. Ring ) |
| 22 | eqid | |- ( Base ` U ) = ( Base ` U ) |
|
| 23 | 22 9 | ringidcl | |- ( U e. Ring -> .1. e. ( Base ` U ) ) |
| 24 | 21 23 | syl | |- ( ph -> .1. e. ( Base ` U ) ) |
| 25 | 22 8 | ring0cl | |- ( U e. Ring -> .0. e. ( Base ` U ) ) |
| 26 | 21 25 | syl | |- ( ph -> .0. e. ( Base ` U ) ) |
| 27 | 24 26 | ifcld | |- ( ph -> if ( s = B , .1. , .0. ) e. ( Base ` U ) ) |
| 28 | 27 | adantr | |- ( ( ph /\ s e. D ) -> if ( s = B , .1. , .0. ) e. ( Base ` U ) ) |
| 29 | 28 11 | fmptd | |- ( ph -> F : D --> ( Base ` U ) ) |
| 30 | 17 19 29 | elmapdd | |- ( ph -> F e. ( ( Base ` U ) ^m D ) ) |
| 31 | eqid | |- ( I mPwSer U ) = ( I mPwSer U ) |
|
| 32 | eqid | |- ( Base ` ( I mPwSer U ) ) = ( Base ` ( I mPwSer U ) ) |
|
| 33 | 31 22 10 32 12 | psrbas | |- ( ph -> ( Base ` ( I mPwSer U ) ) = ( ( Base ` U ) ^m D ) ) |
| 34 | 30 33 | eleqtrrd | |- ( ph -> F e. ( Base ` ( I mPwSer U ) ) ) |
| 35 | 19 26 11 | sniffsupp | |- ( ph -> F finSupp .0. ) |
| 36 | 2 31 32 8 4 | mplelbas | |- ( F e. W <-> ( F e. ( Base ` ( I mPwSer U ) ) /\ F finSupp .0. ) ) |
| 37 | 34 35 36 | sylanbrc | |- ( ph -> F e. W ) |
| 38 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 39 | 1 2 4 3 10 5 6 7 38 12 13 14 37 15 | evlsvvval | |- ( ph -> ( ( Q ` F ) ` A ) = ( S gsum ( b e. D |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) ) ) |
| 40 | 16 | snssd | |- ( ph -> { B } C_ D ) |
| 41 | resmpt | |- ( { B } C_ D -> ( ( b e. D |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) |` { B } ) = ( b e. { B } |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) ) |
|
| 42 | 40 41 | syl | |- ( ph -> ( ( b e. D |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) |` { B } ) = ( b e. { B } |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) ) |
| 43 | 42 | oveq2d | |- ( ph -> ( S gsum ( ( b e. D |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) |` { B } ) ) = ( S gsum ( b e. { B } |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) ) ) |
| 44 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 45 | 13 | crngringd | |- ( ph -> S e. Ring ) |
| 46 | 45 | ringcmnd | |- ( ph -> S e. CMnd ) |
| 47 | 45 | adantr | |- ( ( ph /\ b e. D ) -> S e. Ring ) |
| 48 | 3 | subrgbas | |- ( R e. ( SubRing ` S ) -> R = ( Base ` U ) ) |
| 49 | 5 | subrgss | |- ( R e. ( SubRing ` S ) -> R C_ K ) |
| 50 | 48 49 | eqsstrrd | |- ( R e. ( SubRing ` S ) -> ( Base ` U ) C_ K ) |
| 51 | 14 50 | syl | |- ( ph -> ( Base ` U ) C_ K ) |
| 52 | 29 51 | fssd | |- ( ph -> F : D --> K ) |
| 53 | 52 | ffvelcdmda | |- ( ( ph /\ b e. D ) -> ( F ` b ) e. K ) |
| 54 | 12 | adantr | |- ( ( ph /\ b e. D ) -> I e. V ) |
| 55 | 13 | adantr | |- ( ( ph /\ b e. D ) -> S e. CRing ) |
| 56 | 15 | adantr | |- ( ( ph /\ b e. D ) -> A e. ( K ^m I ) ) |
| 57 | simpr | |- ( ( ph /\ b e. D ) -> b e. D ) |
|
| 58 | 10 5 6 7 54 55 56 57 | evlsvvvallem | |- ( ( ph /\ b e. D ) -> ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) e. K ) |
| 59 | 5 38 47 53 58 | ringcld | |- ( ( ph /\ b e. D ) -> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) e. K ) |
| 60 | 59 | fmpttd | |- ( ph -> ( b e. D |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) : D --> K ) |
| 61 | eldifsnneq | |- ( b e. ( D \ { B } ) -> -. b = B ) |
|
| 62 | 61 | adantl | |- ( ( ph /\ b e. ( D \ { B } ) ) -> -. b = B ) |
| 63 | 62 | iffalsed | |- ( ( ph /\ b e. ( D \ { B } ) ) -> if ( b = B , .1. , .0. ) = .0. ) |
| 64 | eqeq1 | |- ( s = b -> ( s = B <-> b = B ) ) |
|
| 65 | 64 | ifbid | |- ( s = b -> if ( s = B , .1. , .0. ) = if ( b = B , .1. , .0. ) ) |
| 66 | eldifi | |- ( b e. ( D \ { B } ) -> b e. D ) |
|
| 67 | 66 | adantl | |- ( ( ph /\ b e. ( D \ { B } ) ) -> b e. D ) |
| 68 | 9 | fvexi | |- .1. e. _V |
| 69 | 8 | fvexi | |- .0. e. _V |
| 70 | 68 69 | ifex | |- if ( b = B , .1. , .0. ) e. _V |
| 71 | 70 | a1i | |- ( ( ph /\ b e. ( D \ { B } ) ) -> if ( b = B , .1. , .0. ) e. _V ) |
| 72 | 11 65 67 71 | fvmptd3 | |- ( ( ph /\ b e. ( D \ { B } ) ) -> ( F ` b ) = if ( b = B , .1. , .0. ) ) |
| 73 | 3 44 | subrg0 | |- ( R e. ( SubRing ` S ) -> ( 0g ` S ) = ( 0g ` U ) ) |
| 74 | 73 8 | eqtr4di | |- ( R e. ( SubRing ` S ) -> ( 0g ` S ) = .0. ) |
| 75 | 14 74 | syl | |- ( ph -> ( 0g ` S ) = .0. ) |
| 76 | 75 | adantr | |- ( ( ph /\ b e. ( D \ { B } ) ) -> ( 0g ` S ) = .0. ) |
| 77 | 63 72 76 | 3eqtr4d | |- ( ( ph /\ b e. ( D \ { B } ) ) -> ( F ` b ) = ( 0g ` S ) ) |
| 78 | 77 | oveq1d | |- ( ( ph /\ b e. ( D \ { B } ) ) -> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) = ( ( 0g ` S ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) |
| 79 | 66 58 | sylan2 | |- ( ( ph /\ b e. ( D \ { B } ) ) -> ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) e. K ) |
| 80 | 5 38 44 | ringlz | |- ( ( S e. Ring /\ ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) e. K ) -> ( ( 0g ` S ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) = ( 0g ` S ) ) |
| 81 | 45 79 80 | syl2an2r | |- ( ( ph /\ b e. ( D \ { B } ) ) -> ( ( 0g ` S ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) = ( 0g ` S ) ) |
| 82 | 78 81 | eqtrd | |- ( ( ph /\ b e. ( D \ { B } ) ) -> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) = ( 0g ` S ) ) |
| 83 | 82 19 | suppss2 | |- ( ph -> ( ( b e. D |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) supp ( 0g ` S ) ) C_ { B } ) |
| 84 | 10 2 3 4 5 6 7 38 12 13 14 37 15 | evlsvvvallem2 | |- ( ph -> ( b e. D |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) finSupp ( 0g ` S ) ) |
| 85 | 5 44 46 19 60 83 84 | gsumres | |- ( ph -> ( S gsum ( ( b e. D |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) |` { B } ) ) = ( S gsum ( b e. D |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) ) ) |
| 86 | 13 | crnggrpd | |- ( ph -> S e. Grp ) |
| 87 | 86 | grpmndd | |- ( ph -> S e. Mnd ) |
| 88 | 52 16 | ffvelcdmd | |- ( ph -> ( F ` B ) e. K ) |
| 89 | 10 5 6 7 12 13 15 16 | evlsvvvallem | |- ( ph -> ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) e. K ) |
| 90 | 5 38 45 88 89 | ringcld | |- ( ph -> ( ( F ` B ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) e. K ) |
| 91 | fveq2 | |- ( b = B -> ( F ` b ) = ( F ` B ) ) |
|
| 92 | fveq1 | |- ( b = B -> ( b ` v ) = ( B ` v ) ) |
|
| 93 | 92 | oveq1d | |- ( b = B -> ( ( b ` v ) .^ ( A ` v ) ) = ( ( B ` v ) .^ ( A ` v ) ) ) |
| 94 | 93 | mpteq2dv | |- ( b = B -> ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) = ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) |
| 95 | 94 | oveq2d | |- ( b = B -> ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) = ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) |
| 96 | 91 95 | oveq12d | |- ( b = B -> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) = ( ( F ` B ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) ) |
| 97 | 5 96 | gsumsn | |- ( ( S e. Mnd /\ B e. D /\ ( ( F ` B ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) e. K ) -> ( S gsum ( b e. { B } |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) ) = ( ( F ` B ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) ) |
| 98 | 87 16 90 97 | syl3anc | |- ( ph -> ( S gsum ( b e. { B } |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) ) = ( ( F ` B ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) ) |
| 99 | iftrue | |- ( s = B -> if ( s = B , .1. , .0. ) = .1. ) |
|
| 100 | 68 | a1i | |- ( ph -> .1. e. _V ) |
| 101 | 11 99 16 100 | fvmptd3 | |- ( ph -> ( F ` B ) = .1. ) |
| 102 | eqid | |- ( 1r ` S ) = ( 1r ` S ) |
|
| 103 | 3 102 | subrg1 | |- ( R e. ( SubRing ` S ) -> ( 1r ` S ) = ( 1r ` U ) ) |
| 104 | 14 103 | syl | |- ( ph -> ( 1r ` S ) = ( 1r ` U ) ) |
| 105 | 9 101 104 | 3eqtr4a | |- ( ph -> ( F ` B ) = ( 1r ` S ) ) |
| 106 | 105 | oveq1d | |- ( ph -> ( ( F ` B ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) = ( ( 1r ` S ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) ) |
| 107 | 5 38 102 45 89 | ringlidmd | |- ( ph -> ( ( 1r ` S ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) = ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) |
| 108 | 98 106 107 | 3eqtrd | |- ( ph -> ( S gsum ( b e. { B } |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) ) = ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) |
| 109 | 43 85 108 | 3eqtr3d | |- ( ph -> ( S gsum ( b e. D |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) ) = ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) |
| 110 | 39 109 | eqtrd | |- ( ph -> ( ( Q ` F ) ` A ) = ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) |
| 111 | 37 110 | jca | |- ( ph -> ( F e. W /\ ( ( Q ` F ) ` A ) = ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) ) |