This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrg1.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| subrg1.2 | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | subrg1 | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 1 = ( 1r ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrg1.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| 2 | subrg1.2 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 4 | 3 | subrg1cl | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) ∈ 𝐴 ) |
| 5 | 1 | subrgbas | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 6 | 4 5 | eleqtrd | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑆 ) ) |
| 7 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 8 | 7 | subrgss | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 9 | 5 8 | eqsstrrd | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 10 | 9 | sselda | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 11 | subrgrcl | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) | |
| 12 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 13 | 7 12 3 | ringidmlem | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) |
| 14 | 11 13 | sylan | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) |
| 15 | 1 12 | ressmulr | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 16 | 15 | oveqd | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑆 ) 𝑥 ) ) |
| 17 | 16 | eqeq1d | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ↔ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ) ) |
| 18 | 15 | oveqd | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑥 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 𝑥 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) ) |
| 19 | 18 | eqeq1d | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ↔ ( 𝑥 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) |
| 20 | 17 19 | anbi12d | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ↔ ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) ) |
| 21 | 20 | biimpa | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) → ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) |
| 22 | 14 21 | syldan | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) |
| 23 | 10 22 | syldan | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) |
| 24 | 23 | ralrimiva | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) |
| 25 | 1 | subrgring | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
| 26 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 27 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 28 | eqid | ⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) | |
| 29 | 26 27 28 | isringid | ⊢ ( 𝑆 ∈ Ring → ( ( ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) ↔ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑅 ) ) ) |
| 30 | 25 29 | syl | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ( ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) ↔ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑅 ) ) ) |
| 31 | 6 24 30 | mpbi2and | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑅 ) ) |
| 32 | 2 31 | eqtr4id | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 1 = ( 1r ‘ 𝑆 ) ) |