This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function mapping all but one arguments to zero is finitely supported. (Contributed by AV, 8-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sniffsupp.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| sniffsupp.0 | ⊢ ( 𝜑 → 0 ∈ 𝑊 ) | ||
| sniffsupp.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) | ||
| Assertion | sniffsupp | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sniffsupp.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 2 | sniffsupp.0 | ⊢ ( 𝜑 → 0 ∈ 𝑊 ) | |
| 3 | sniffsupp.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) | |
| 4 | snfi | ⊢ { 𝑋 } ∈ Fin | |
| 5 | eldifsni | ⊢ ( 𝑥 ∈ ( 𝐼 ∖ { 𝑋 } ) → 𝑥 ≠ 𝑋 ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑋 } ) ) → 𝑥 ≠ 𝑋 ) |
| 7 | 6 | neneqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑋 } ) ) → ¬ 𝑥 = 𝑋 ) |
| 8 | 7 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑋 } ) ) → if ( 𝑥 = 𝑋 , 𝐴 , 0 ) = 0 ) |
| 9 | 8 1 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) ⊆ { 𝑋 } ) |
| 10 | ssfi | ⊢ ( ( { 𝑋 } ∈ Fin ∧ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) ⊆ { 𝑋 } ) → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) ∈ Fin ) | |
| 11 | 4 9 10 | sylancr | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) ∈ Fin ) |
| 12 | funmpt | ⊢ Fun ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) | |
| 13 | 1 | mptexd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) ∈ V ) |
| 14 | funisfsupp | ⊢ ( ( Fun ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) ∧ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) ∈ V ∧ 0 ∈ 𝑊 ) → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) finSupp 0 ↔ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) ∈ Fin ) ) | |
| 15 | 12 13 2 14 | mp3an2i | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) finSupp 0 ↔ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) ∈ Fin ) ) |
| 16 | 11 15 | mpbird | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) finSupp 0 ) |
| 17 | 3 16 | eqbrtrid | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) |