This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for exponentiation. (Contributed by SN, 27-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsaddval.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| evlsaddval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) | ||
| evlsaddval.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evlsaddval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| evlsaddval.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| evlsaddval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑍 ) | ||
| evlsaddval.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlsaddval.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evlsaddval.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | ||
| evlsaddval.m | ⊢ ( 𝜑 → ( 𝑀 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) = 𝑉 ) ) | ||
| evlsexpval.g | ⊢ ∙ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | ||
| evlsexpval.f | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) | ||
| evlsexpval.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| Assertion | evlsexpval | ⊢ ( 𝜑 → ( ( 𝑁 ∙ 𝑀 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝐴 ) = ( 𝑁 ↑ 𝑉 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsaddval.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 2 | evlsaddval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) | |
| 3 | evlsaddval.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 4 | evlsaddval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 5 | evlsaddval.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 6 | evlsaddval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑍 ) | |
| 7 | evlsaddval.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 8 | evlsaddval.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 9 | evlsaddval.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | |
| 10 | evlsaddval.m | ⊢ ( 𝜑 → ( 𝑀 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) = 𝑉 ) ) | |
| 11 | evlsexpval.g | ⊢ ∙ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | |
| 12 | evlsexpval.f | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) | |
| 13 | evlsexpval.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 14 | eqid | ⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) | |
| 15 | 14 5 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
| 16 | eqid | ⊢ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) | |
| 17 | 1 2 3 16 4 | evlsrhm | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 18 | 6 7 8 17 | syl3anc | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 19 | rhmrcl1 | ⊢ ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑃 ∈ Ring ) | |
| 20 | 14 | ringmgp | ⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 21 | 18 19 20 | 3syl | ⊢ ( 𝜑 → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 22 | 10 | simpld | ⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) |
| 23 | 15 11 21 13 22 | mulgnn0cld | ⊢ ( 𝜑 → ( 𝑁 ∙ 𝑀 ) ∈ 𝐵 ) |
| 24 | eqid | ⊢ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) | |
| 25 | 1 2 14 11 3 16 24 4 5 6 7 8 13 22 | evlspw | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑁 ∙ 𝑀 ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑄 ‘ 𝑀 ) ) ) |
| 26 | 25 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝐴 ) = ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑄 ‘ 𝑀 ) ) ‘ 𝐴 ) ) |
| 27 | eqid | ⊢ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) | |
| 28 | eqid | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) | |
| 29 | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) = ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) | |
| 30 | 7 | crngringd | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 31 | ovexd | ⊢ ( 𝜑 → ( 𝐾 ↑m 𝐼 ) ∈ V ) | |
| 32 | 5 27 | rhmf | ⊢ ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 33 | 18 32 | syl | ⊢ ( 𝜑 → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 34 | 33 22 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 35 | 16 27 24 28 29 12 30 31 13 34 9 | pwsexpg | ⊢ ( 𝜑 → ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑄 ‘ 𝑀 ) ) ‘ 𝐴 ) = ( 𝑁 ↑ ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) ) ) |
| 36 | 10 | simprd | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) = 𝑉 ) |
| 37 | 36 | oveq2d | ⊢ ( 𝜑 → ( 𝑁 ↑ ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) ) = ( 𝑁 ↑ 𝑉 ) ) |
| 38 | 26 35 37 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝐴 ) = ( 𝑁 ↑ 𝑉 ) ) |
| 39 | 23 38 | jca | ⊢ ( 𝜑 → ( ( 𝑁 ∙ 𝑀 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝐴 ) = ( 𝑁 ↑ 𝑉 ) ) ) |