This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for theorems using evlsvvval . (Contributed by SN, 8-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsvvvallem2.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| evlsvvvallem2.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) | ||
| evlsvvvallem2.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evlsvvvallem2.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| evlsvvvallem2.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| evlsvvvallem2.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑆 ) | ||
| evlsvvvallem2.w | ⊢ ↑ = ( .g ‘ 𝑀 ) | ||
| evlsvvvallem2.x | ⊢ · = ( .r ‘ 𝑆 ) | ||
| evlsvvvallem2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| evlsvvvallem2.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlsvvvallem2.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evlsvvvallem2.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| evlsvvvallem2.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | ||
| Assertion | evlsvvvallem2 | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsvvvallem2.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 2 | evlsvvvallem2.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) | |
| 3 | evlsvvvallem2.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 4 | evlsvvvallem2.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 5 | evlsvvvallem2.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 6 | evlsvvvallem2.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑆 ) | |
| 7 | evlsvvvallem2.w | ⊢ ↑ = ( .g ‘ 𝑀 ) | |
| 8 | evlsvvvallem2.x | ⊢ · = ( .r ‘ 𝑆 ) | |
| 9 | evlsvvvallem2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 10 | evlsvvvallem2.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 11 | evlsvvvallem2.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 12 | evlsvvvallem2.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 13 | evlsvvvallem2.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | |
| 14 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 15 | 1 14 | rabex2 | ⊢ 𝐷 ∈ V |
| 16 | 15 | mptex | ⊢ ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ∈ V |
| 17 | 16 | a1i | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ∈ V ) |
| 18 | fvexd | ⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) ∈ V ) | |
| 19 | funmpt | ⊢ Fun ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) | |
| 20 | 19 | a1i | ⊢ ( 𝜑 → Fun ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) |
| 21 | eqid | ⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) | |
| 22 | 2 4 21 12 | mplelsfi | ⊢ ( 𝜑 → 𝐹 finSupp ( 0g ‘ 𝑈 ) ) |
| 23 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 24 | 2 23 4 1 12 | mplelf | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ( Base ‘ 𝑈 ) ) |
| 25 | ssidd | ⊢ ( 𝜑 → ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ⊆ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) | |
| 26 | fvexd | ⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) ∈ V ) | |
| 27 | 24 25 12 26 | suppssrg | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝐹 ‘ 𝑏 ) = ( 0g ‘ 𝑈 ) ) |
| 28 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 29 | 3 28 | subrg0 | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
| 30 | 11 29 | syl | ⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
| 31 | 30 | eqcomd | ⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑆 ) ) |
| 32 | 31 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑆 ) ) |
| 33 | 27 32 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝐹 ‘ 𝑏 ) = ( 0g ‘ 𝑆 ) ) |
| 34 | 33 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( ( 0g ‘ 𝑆 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
| 35 | 10 | crngringd | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 36 | 35 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → 𝑆 ∈ Ring ) |
| 37 | eldifi | ⊢ ( 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) → 𝑏 ∈ 𝐷 ) | |
| 38 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝐼 ∈ 𝑉 ) |
| 39 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑆 ∈ CRing ) |
| 40 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 41 | simpr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑏 ∈ 𝐷 ) | |
| 42 | 1 5 6 7 38 39 40 41 | evlsvvvallem | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ∈ 𝐾 ) |
| 43 | 37 42 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ∈ 𝐾 ) |
| 44 | 5 8 28 36 43 | ringlzd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( ( 0g ‘ 𝑆 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( 0g ‘ 𝑆 ) ) |
| 45 | 34 44 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( 0g ‘ 𝑆 ) ) |
| 46 | 15 | a1i | ⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 47 | 45 46 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) |
| 48 | 17 18 20 22 47 | fsuppsssuppgd | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |