This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The unity element of a ring is a left multiplicative identity. (Contributed by SN, 14-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringlidmd.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ringlidmd.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| ringlidmd.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| ringlidmd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| ringlidmd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | ringlidmd | ⊢ ( 𝜑 → ( 1 · 𝑋 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringlidmd.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ringlidmd.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | ringlidmd.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | ringlidmd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 5 | ringlidmd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | 1 2 3 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 1 · 𝑋 ) = 𝑋 ) |
| 7 | 4 5 6 | syl2anc | ⊢ ( 𝜑 → ( 1 · 𝑋 ) = 𝑋 ) |