This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid of endofunctions on a set A is a topological monoid. Formerly part of proof for symgtgp . (Contributed by AV, 23-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efmndtmd.g | |- M = ( EndoFMnd ` A ) |
|
| Assertion | efmndtmd | |- ( A e. V -> M e. TopMnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmndtmd.g | |- M = ( EndoFMnd ` A ) |
|
| 2 | 1 | efmndmnd | |- ( A e. V -> M e. Mnd ) |
| 3 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 4 | 1 3 | efmndtopn | |- ( A e. V -> ( ( Xt_ ` ( A X. { ~P A } ) ) |`t ( Base ` M ) ) = ( TopOpen ` M ) ) |
| 5 | distopon | |- ( A e. V -> ~P A e. ( TopOn ` A ) ) |
|
| 6 | eqid | |- ( Xt_ ` ( A X. { ~P A } ) ) = ( Xt_ ` ( A X. { ~P A } ) ) |
|
| 7 | 6 | pttoponconst | |- ( ( A e. V /\ ~P A e. ( TopOn ` A ) ) -> ( Xt_ ` ( A X. { ~P A } ) ) e. ( TopOn ` ( A ^m A ) ) ) |
| 8 | 5 7 | mpdan | |- ( A e. V -> ( Xt_ ` ( A X. { ~P A } ) ) e. ( TopOn ` ( A ^m A ) ) ) |
| 9 | 1 3 | efmndbas | |- ( Base ` M ) = ( A ^m A ) |
| 10 | 9 | eleq2i | |- ( x e. ( Base ` M ) <-> x e. ( A ^m A ) ) |
| 11 | 10 | biimpi | |- ( x e. ( Base ` M ) -> x e. ( A ^m A ) ) |
| 12 | 11 | a1i | |- ( A e. V -> ( x e. ( Base ` M ) -> x e. ( A ^m A ) ) ) |
| 13 | 12 | ssrdv | |- ( A e. V -> ( Base ` M ) C_ ( A ^m A ) ) |
| 14 | resttopon | |- ( ( ( Xt_ ` ( A X. { ~P A } ) ) e. ( TopOn ` ( A ^m A ) ) /\ ( Base ` M ) C_ ( A ^m A ) ) -> ( ( Xt_ ` ( A X. { ~P A } ) ) |`t ( Base ` M ) ) e. ( TopOn ` ( Base ` M ) ) ) |
|
| 15 | 8 13 14 | syl2anc | |- ( A e. V -> ( ( Xt_ ` ( A X. { ~P A } ) ) |`t ( Base ` M ) ) e. ( TopOn ` ( Base ` M ) ) ) |
| 16 | 4 15 | eqeltrrd | |- ( A e. V -> ( TopOpen ` M ) e. ( TopOn ` ( Base ` M ) ) ) |
| 17 | eqid | |- ( TopOpen ` M ) = ( TopOpen ` M ) |
|
| 18 | 3 17 | istps | |- ( M e. TopSp <-> ( TopOpen ` M ) e. ( TopOn ` ( Base ` M ) ) ) |
| 19 | 16 18 | sylibr | |- ( A e. V -> M e. TopSp ) |
| 20 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 21 | 1 3 20 | efmndplusg | |- ( +g ` M ) = ( x e. ( Base ` M ) , y e. ( Base ` M ) |-> ( x o. y ) ) |
| 22 | eqid | |- ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) = ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) |
|
| 23 | distop | |- ( A e. V -> ~P A e. Top ) |
|
| 24 | eqid | |- ( ~P A ^ko ~P A ) = ( ~P A ^ko ~P A ) |
|
| 25 | 24 | xkotopon | |- ( ( ~P A e. Top /\ ~P A e. Top ) -> ( ~P A ^ko ~P A ) e. ( TopOn ` ( ~P A Cn ~P A ) ) ) |
| 26 | 23 23 25 | syl2anc | |- ( A e. V -> ( ~P A ^ko ~P A ) e. ( TopOn ` ( ~P A Cn ~P A ) ) ) |
| 27 | cndis | |- ( ( A e. V /\ ~P A e. ( TopOn ` A ) ) -> ( ~P A Cn ~P A ) = ( A ^m A ) ) |
|
| 28 | 5 27 | mpdan | |- ( A e. V -> ( ~P A Cn ~P A ) = ( A ^m A ) ) |
| 29 | 13 28 | sseqtrrd | |- ( A e. V -> ( Base ` M ) C_ ( ~P A Cn ~P A ) ) |
| 30 | disllycmp | |- ( A e. V -> ~P A e. Locally Comp ) |
|
| 31 | llynlly | |- ( ~P A e. Locally Comp -> ~P A e. N-Locally Comp ) |
|
| 32 | 30 31 | syl | |- ( A e. V -> ~P A e. N-Locally Comp ) |
| 33 | eqid | |- ( x e. ( ~P A Cn ~P A ) , y e. ( ~P A Cn ~P A ) |-> ( x o. y ) ) = ( x e. ( ~P A Cn ~P A ) , y e. ( ~P A Cn ~P A ) |-> ( x o. y ) ) |
|
| 34 | 33 | xkococn | |- ( ( ~P A e. Top /\ ~P A e. N-Locally Comp /\ ~P A e. Top ) -> ( x e. ( ~P A Cn ~P A ) , y e. ( ~P A Cn ~P A ) |-> ( x o. y ) ) e. ( ( ( ~P A ^ko ~P A ) tX ( ~P A ^ko ~P A ) ) Cn ( ~P A ^ko ~P A ) ) ) |
| 35 | 23 32 23 34 | syl3anc | |- ( A e. V -> ( x e. ( ~P A Cn ~P A ) , y e. ( ~P A Cn ~P A ) |-> ( x o. y ) ) e. ( ( ( ~P A ^ko ~P A ) tX ( ~P A ^ko ~P A ) ) Cn ( ~P A ^ko ~P A ) ) ) |
| 36 | 22 26 29 22 26 29 35 | cnmpt2res | |- ( A e. V -> ( x e. ( Base ` M ) , y e. ( Base ` M ) |-> ( x o. y ) ) e. ( ( ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) tX ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) ) Cn ( ~P A ^ko ~P A ) ) ) |
| 37 | 21 36 | eqeltrid | |- ( A e. V -> ( +g ` M ) e. ( ( ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) tX ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) ) Cn ( ~P A ^ko ~P A ) ) ) |
| 38 | xkopt | |- ( ( ~P A e. Top /\ A e. V ) -> ( ~P A ^ko ~P A ) = ( Xt_ ` ( A X. { ~P A } ) ) ) |
|
| 39 | 23 38 | mpancom | |- ( A e. V -> ( ~P A ^ko ~P A ) = ( Xt_ ` ( A X. { ~P A } ) ) ) |
| 40 | 39 | oveq1d | |- ( A e. V -> ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) = ( ( Xt_ ` ( A X. { ~P A } ) ) |`t ( Base ` M ) ) ) |
| 41 | 40 4 | eqtrd | |- ( A e. V -> ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) = ( TopOpen ` M ) ) |
| 42 | 41 41 | oveq12d | |- ( A e. V -> ( ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) tX ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) ) = ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) ) |
| 43 | 42 | oveq1d | |- ( A e. V -> ( ( ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) tX ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) ) Cn ( ~P A ^ko ~P A ) ) = ( ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) Cn ( ~P A ^ko ~P A ) ) ) |
| 44 | 37 43 | eleqtrd | |- ( A e. V -> ( +g ` M ) e. ( ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) Cn ( ~P A ^ko ~P A ) ) ) |
| 45 | vex | |- x e. _V |
|
| 46 | vex | |- y e. _V |
|
| 47 | 45 46 | coex | |- ( x o. y ) e. _V |
| 48 | 21 47 | fnmpoi | |- ( +g ` M ) Fn ( ( Base ` M ) X. ( Base ` M ) ) |
| 49 | eqid | |- ( +f ` M ) = ( +f ` M ) |
|
| 50 | 3 20 49 | plusfeq | |- ( ( +g ` M ) Fn ( ( Base ` M ) X. ( Base ` M ) ) -> ( +f ` M ) = ( +g ` M ) ) |
| 51 | 48 50 | ax-mp | |- ( +f ` M ) = ( +g ` M ) |
| 52 | 51 | eqcomi | |- ( +g ` M ) = ( +f ` M ) |
| 53 | 3 52 | mndplusf | |- ( M e. Mnd -> ( +g ` M ) : ( ( Base ` M ) X. ( Base ` M ) ) --> ( Base ` M ) ) |
| 54 | frn | |- ( ( +g ` M ) : ( ( Base ` M ) X. ( Base ` M ) ) --> ( Base ` M ) -> ran ( +g ` M ) C_ ( Base ` M ) ) |
|
| 55 | 2 53 54 | 3syl | |- ( A e. V -> ran ( +g ` M ) C_ ( Base ` M ) ) |
| 56 | cnrest2 | |- ( ( ( ~P A ^ko ~P A ) e. ( TopOn ` ( ~P A Cn ~P A ) ) /\ ran ( +g ` M ) C_ ( Base ` M ) /\ ( Base ` M ) C_ ( ~P A Cn ~P A ) ) -> ( ( +g ` M ) e. ( ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) Cn ( ~P A ^ko ~P A ) ) <-> ( +g ` M ) e. ( ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) Cn ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) ) ) ) |
|
| 57 | 26 55 29 56 | syl3anc | |- ( A e. V -> ( ( +g ` M ) e. ( ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) Cn ( ~P A ^ko ~P A ) ) <-> ( +g ` M ) e. ( ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) Cn ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) ) ) ) |
| 58 | 44 57 | mpbid | |- ( A e. V -> ( +g ` M ) e. ( ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) Cn ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) ) ) |
| 59 | 41 | oveq2d | |- ( A e. V -> ( ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) Cn ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) ) = ( ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) Cn ( TopOpen ` M ) ) ) |
| 60 | 58 59 | eleqtrd | |- ( A e. V -> ( +g ` M ) e. ( ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) Cn ( TopOpen ` M ) ) ) |
| 61 | 52 17 | istmd | |- ( M e. TopMnd <-> ( M e. Mnd /\ M e. TopSp /\ ( +g ` M ) e. ( ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) Cn ( TopOpen ` M ) ) ) ) |
| 62 | 2 19 60 61 | syl3anbrc | |- ( A e. V -> M e. TopMnd ) |