This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A locally A space is n-locally A : the "n-locally" predicate is the weaker notion. (Contributed by Mario Carneiro, 2-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | llynlly | ⊢ ( 𝐽 ∈ Locally 𝐴 → 𝐽 ∈ 𝑛-Locally 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | llytop | ⊢ ( 𝐽 ∈ Locally 𝐴 → 𝐽 ∈ Top ) | |
| 2 | llyi | ⊢ ( ( 𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑢 ∈ 𝐽 ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) | |
| 3 | simpl1 | ⊢ ( ( ( 𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) ) → 𝐽 ∈ Locally 𝐴 ) | |
| 4 | 3 1 | syl | ⊢ ( ( ( 𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) ) → 𝐽 ∈ Top ) |
| 5 | simprl | ⊢ ( ( ( 𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) ) → 𝑢 ∈ 𝐽 ) | |
| 6 | simprr2 | ⊢ ( ( ( 𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) ) → 𝑦 ∈ 𝑢 ) | |
| 7 | opnneip | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ 𝑢 ) → 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ) | |
| 8 | 4 5 6 7 | syl3anc | ⊢ ( ( ( 𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) ) → 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ) |
| 9 | simprr1 | ⊢ ( ( ( 𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) ) → 𝑢 ⊆ 𝑥 ) | |
| 10 | velpw | ⊢ ( 𝑢 ∈ 𝒫 𝑥 ↔ 𝑢 ⊆ 𝑥 ) | |
| 11 | 9 10 | sylibr | ⊢ ( ( ( 𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) ) → 𝑢 ∈ 𝒫 𝑥 ) |
| 12 | 8 11 | elind | ⊢ ( ( ( 𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) ) → 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ) |
| 13 | simprr3 | ⊢ ( ( ( 𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) ) → ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) | |
| 14 | 2 12 13 | reximssdv | ⊢ ( ( 𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) |
| 15 | 14 | 3expb | ⊢ ( ( 𝐽 ∈ Locally 𝐴 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ) → ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) |
| 16 | 15 | ralrimivva | ⊢ ( 𝐽 ∈ Locally 𝐴 → ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) |
| 17 | isnlly | ⊢ ( 𝐽 ∈ 𝑛-Locally 𝐴 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) | |
| 18 | 1 16 17 | sylanbrc | ⊢ ( 𝐽 ∈ Locally 𝐴 → 𝐽 ∈ 𝑛-Locally 𝐴 ) |