This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a topological monoid". (Contributed by Mario Carneiro, 19-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | istmd.1 | ⊢ 𝐹 = ( +𝑓 ‘ 𝐺 ) | |
| istmd.2 | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| Assertion | istmd | ⊢ ( 𝐺 ∈ TopMnd ↔ ( 𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istmd.1 | ⊢ 𝐹 = ( +𝑓 ‘ 𝐺 ) | |
| 2 | istmd.2 | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 3 | elin | ⊢ ( 𝐺 ∈ ( Mnd ∩ TopSp ) ↔ ( 𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ) ) | |
| 4 | 3 | anbi1i | ⊢ ( ( 𝐺 ∈ ( Mnd ∩ TopSp ) ∧ 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) ↔ ( ( 𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ) ∧ 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) ) |
| 5 | fvexd | ⊢ ( 𝑓 = 𝐺 → ( TopOpen ‘ 𝑓 ) ∈ V ) | |
| 6 | simpl | ⊢ ( ( 𝑓 = 𝐺 ∧ 𝑗 = ( TopOpen ‘ 𝑓 ) ) → 𝑓 = 𝐺 ) | |
| 7 | 6 | fveq2d | ⊢ ( ( 𝑓 = 𝐺 ∧ 𝑗 = ( TopOpen ‘ 𝑓 ) ) → ( +𝑓 ‘ 𝑓 ) = ( +𝑓 ‘ 𝐺 ) ) |
| 8 | 7 1 | eqtr4di | ⊢ ( ( 𝑓 = 𝐺 ∧ 𝑗 = ( TopOpen ‘ 𝑓 ) ) → ( +𝑓 ‘ 𝑓 ) = 𝐹 ) |
| 9 | id | ⊢ ( 𝑗 = ( TopOpen ‘ 𝑓 ) → 𝑗 = ( TopOpen ‘ 𝑓 ) ) | |
| 10 | fveq2 | ⊢ ( 𝑓 = 𝐺 → ( TopOpen ‘ 𝑓 ) = ( TopOpen ‘ 𝐺 ) ) | |
| 11 | 10 2 | eqtr4di | ⊢ ( 𝑓 = 𝐺 → ( TopOpen ‘ 𝑓 ) = 𝐽 ) |
| 12 | 9 11 | sylan9eqr | ⊢ ( ( 𝑓 = 𝐺 ∧ 𝑗 = ( TopOpen ‘ 𝑓 ) ) → 𝑗 = 𝐽 ) |
| 13 | 12 12 | oveq12d | ⊢ ( ( 𝑓 = 𝐺 ∧ 𝑗 = ( TopOpen ‘ 𝑓 ) ) → ( 𝑗 ×t 𝑗 ) = ( 𝐽 ×t 𝐽 ) ) |
| 14 | 13 12 | oveq12d | ⊢ ( ( 𝑓 = 𝐺 ∧ 𝑗 = ( TopOpen ‘ 𝑓 ) ) → ( ( 𝑗 ×t 𝑗 ) Cn 𝑗 ) = ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 15 | 8 14 | eleq12d | ⊢ ( ( 𝑓 = 𝐺 ∧ 𝑗 = ( TopOpen ‘ 𝑓 ) ) → ( ( +𝑓 ‘ 𝑓 ) ∈ ( ( 𝑗 ×t 𝑗 ) Cn 𝑗 ) ↔ 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) ) |
| 16 | 5 15 | sbcied | ⊢ ( 𝑓 = 𝐺 → ( [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( +𝑓 ‘ 𝑓 ) ∈ ( ( 𝑗 ×t 𝑗 ) Cn 𝑗 ) ↔ 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) ) |
| 17 | df-tmd | ⊢ TopMnd = { 𝑓 ∈ ( Mnd ∩ TopSp ) ∣ [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( +𝑓 ‘ 𝑓 ) ∈ ( ( 𝑗 ×t 𝑗 ) Cn 𝑗 ) } | |
| 18 | 16 17 | elrab2 | ⊢ ( 𝐺 ∈ TopMnd ↔ ( 𝐺 ∈ ( Mnd ∩ TopSp ) ∧ 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) ) |
| 19 | df-3an | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) ↔ ( ( 𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ) ∧ 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) ) | |
| 20 | 4 18 19 | 3bitr4i | ⊢ ( 𝐺 ∈ TopMnd ↔ ( 𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) ) |