This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid of endofunctions on a set A is actually a monoid. (Contributed by AV, 31-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ielefmnd.g | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| Assertion | efmndmnd | ⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ielefmnd.g | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| 2 | 1 | efmndsgrp | ⊢ 𝐺 ∈ Smgrp |
| 3 | 2 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Smgrp ) |
| 4 | 1 | ielefmnd | ⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) ∈ ( Base ‘ 𝐺 ) ) |
| 5 | oveq1 | ⊢ ( 𝑖 = ( I ↾ 𝐴 ) → ( 𝑖 ( +g ‘ 𝐺 ) 𝑓 ) = ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝑖 = ( I ↾ 𝐴 ) → ( ( 𝑖 ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ↔ ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ) ) |
| 7 | oveq2 | ⊢ ( 𝑖 = ( I ↾ 𝐴 ) → ( 𝑓 ( +g ‘ 𝐺 ) 𝑖 ) = ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) ) | |
| 8 | 7 | eqeq1d | ⊢ ( 𝑖 = ( I ↾ 𝐴 ) → ( ( 𝑓 ( +g ‘ 𝐺 ) 𝑖 ) = 𝑓 ↔ ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) = 𝑓 ) ) |
| 9 | 6 8 | anbi12d | ⊢ ( 𝑖 = ( I ↾ 𝐴 ) → ( ( ( 𝑖 ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ∧ ( 𝑓 ( +g ‘ 𝐺 ) 𝑖 ) = 𝑓 ) ↔ ( ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ∧ ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) = 𝑓 ) ) ) |
| 10 | 9 | ralbidv | ⊢ ( 𝑖 = ( I ↾ 𝐴 ) → ( ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( ( 𝑖 ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ∧ ( 𝑓 ( +g ‘ 𝐺 ) 𝑖 ) = 𝑓 ) ↔ ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ∧ ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) = 𝑓 ) ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑖 = ( I ↾ 𝐴 ) ) → ( ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( ( 𝑖 ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ∧ ( 𝑓 ( +g ‘ 𝐺 ) 𝑖 ) = 𝑓 ) ↔ ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ∧ ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) = 𝑓 ) ) ) |
| 12 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 13 | 1 12 | efmndbasf | ⊢ ( 𝑓 ∈ ( Base ‘ 𝐺 ) → 𝑓 : 𝐴 ⟶ 𝐴 ) |
| 14 | 13 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → 𝑓 : 𝐴 ⟶ 𝐴 ) |
| 15 | fcoi2 | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐴 → ( ( I ↾ 𝐴 ) ∘ 𝑓 ) = 𝑓 ) | |
| 16 | fcoi1 | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐴 → ( 𝑓 ∘ ( I ↾ 𝐴 ) ) = 𝑓 ) | |
| 17 | 15 16 | jca | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐴 → ( ( ( I ↾ 𝐴 ) ∘ 𝑓 ) = 𝑓 ∧ ( 𝑓 ∘ ( I ↾ 𝐴 ) ) = 𝑓 ) ) |
| 18 | 14 17 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( I ↾ 𝐴 ) ∘ 𝑓 ) = 𝑓 ∧ ( 𝑓 ∘ ( I ↾ 𝐴 ) ) = 𝑓 ) ) |
| 19 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 20 | 1 12 19 | efmndov | ⊢ ( ( ( I ↾ 𝐴 ) ∈ ( Base ‘ 𝐺 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) = ( ( I ↾ 𝐴 ) ∘ 𝑓 ) ) |
| 21 | 4 20 | sylan | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) = ( ( I ↾ 𝐴 ) ∘ 𝑓 ) ) |
| 22 | 21 | eqeq1d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ↔ ( ( I ↾ 𝐴 ) ∘ 𝑓 ) = 𝑓 ) ) |
| 23 | 4 | anim1ci | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑓 ∈ ( Base ‘ 𝐺 ) ∧ ( I ↾ 𝐴 ) ∈ ( Base ‘ 𝐺 ) ) ) |
| 24 | 1 12 19 | efmndov | ⊢ ( ( 𝑓 ∈ ( Base ‘ 𝐺 ) ∧ ( I ↾ 𝐴 ) ∈ ( Base ‘ 𝐺 ) ) → ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) = ( 𝑓 ∘ ( I ↾ 𝐴 ) ) ) |
| 25 | 23 24 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) = ( 𝑓 ∘ ( I ↾ 𝐴 ) ) ) |
| 26 | 25 | eqeq1d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) = 𝑓 ↔ ( 𝑓 ∘ ( I ↾ 𝐴 ) ) = 𝑓 ) ) |
| 27 | 22 26 | anbi12d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ∧ ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) = 𝑓 ) ↔ ( ( ( I ↾ 𝐴 ) ∘ 𝑓 ) = 𝑓 ∧ ( 𝑓 ∘ ( I ↾ 𝐴 ) ) = 𝑓 ) ) ) |
| 28 | 18 27 | mpbird | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ∧ ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) = 𝑓 ) ) |
| 29 | 28 | ralrimiva | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ∧ ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) = 𝑓 ) ) |
| 30 | 4 11 29 | rspcedvd | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑖 ∈ ( Base ‘ 𝐺 ) ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( ( 𝑖 ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ∧ ( 𝑓 ( +g ‘ 𝐺 ) 𝑖 ) = 𝑓 ) ) |
| 31 | 12 19 | ismnddef | ⊢ ( 𝐺 ∈ Mnd ↔ ( 𝐺 ∈ Smgrp ∧ ∃ 𝑖 ∈ ( Base ‘ 𝐺 ) ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( ( 𝑖 ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ∧ ( 𝑓 ( +g ‘ 𝐺 ) 𝑖 ) = 𝑓 ) ) ) |
| 32 | 3 30 31 | sylanbrc | ⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd ) |