This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left group action of element A in a topological monoid G is a continuous function. (Contributed by FL, 18-Mar-2008) (Revised by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgplacthmeo.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) | |
| tgplacthmeo.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| tgplacthmeo.3 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| tgplacthmeo.4 | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| Assertion | tmdlactcn | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgplacthmeo.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) | |
| 2 | tgplacthmeo.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | tgplacthmeo.3 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | tgplacthmeo.4 | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 5 | simpl | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋 ) → 𝐺 ∈ TopMnd ) | |
| 6 | 4 2 | tmdtopon | ⊢ ( 𝐺 ∈ TopMnd → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 8 | simpr | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 9 | 7 7 8 | cnmptc | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 10 | 7 | cnmptid | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↦ 𝑥 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 11 | 4 3 5 7 9 10 | cnmpt1plusg | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 12 | 1 11 | eqeltrid | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn 𝐽 ) ) |