This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the monoid of endofunctions on class A . (Contributed by AV, 25-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efmndbas.g | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| efmndbas.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | efmndbas | ⊢ 𝐵 = ( 𝐴 ↑m 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmndbas.g | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| 2 | efmndbas.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | ovex | ⊢ ( 𝐴 ↑m 𝐴 ) ∈ V | |
| 4 | eqid | ⊢ { 〈 ( Base ‘ ndx ) , ( 𝐴 ↑m 𝐴 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } = { 〈 ( Base ‘ ndx ) , ( 𝐴 ↑m 𝐴 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } | |
| 5 | 4 | topgrpbas | ⊢ ( ( 𝐴 ↑m 𝐴 ) ∈ V → ( 𝐴 ↑m 𝐴 ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , ( 𝐴 ↑m 𝐴 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } ) ) |
| 6 | 3 5 | mp1i | ⊢ ( 𝐴 ∈ V → ( 𝐴 ↑m 𝐴 ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , ( 𝐴 ↑m 𝐴 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } ) ) |
| 7 | eqid | ⊢ ( 𝐴 ↑m 𝐴 ) = ( 𝐴 ↑m 𝐴 ) | |
| 8 | eqid | ⊢ ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) = ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) | |
| 9 | eqid | ⊢ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) | |
| 10 | 1 7 8 9 | efmnd | ⊢ ( 𝐴 ∈ V → 𝐺 = { 〈 ( Base ‘ ndx ) , ( 𝐴 ↑m 𝐴 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } ) |
| 11 | 10 | fveq2d | ⊢ ( 𝐴 ∈ V → ( Base ‘ 𝐺 ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , ( 𝐴 ↑m 𝐴 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } ) ) |
| 12 | 6 11 | eqtr4d | ⊢ ( 𝐴 ∈ V → ( 𝐴 ↑m 𝐴 ) = ( Base ‘ 𝐺 ) ) |
| 13 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 14 | reldmmap | ⊢ Rel dom ↑m | |
| 15 | 14 | ovprc1 | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐴 ↑m 𝐴 ) = ∅ ) |
| 16 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( EndoFMnd ‘ 𝐴 ) = ∅ ) | |
| 17 | 1 16 | eqtrid | ⊢ ( ¬ 𝐴 ∈ V → 𝐺 = ∅ ) |
| 18 | 17 | fveq2d | ⊢ ( ¬ 𝐴 ∈ V → ( Base ‘ 𝐺 ) = ( Base ‘ ∅ ) ) |
| 19 | 13 15 18 | 3eqtr4a | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐴 ↑m 𝐴 ) = ( Base ‘ 𝐺 ) ) |
| 20 | 12 19 | pm2.61i | ⊢ ( 𝐴 ↑m 𝐴 ) = ( Base ‘ 𝐺 ) |
| 21 | 2 20 | eqtr4i | ⊢ 𝐵 = ( 𝐴 ↑m 𝐴 ) |