This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 6-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmpt1res.2 | ⊢ 𝐾 = ( 𝐽 ↾t 𝑌 ) | |
| cnmpt1res.3 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| cnmpt1res.5 | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) | ||
| cnmpt2res.7 | ⊢ 𝑁 = ( 𝑀 ↾t 𝑊 ) | ||
| cnmpt2res.8 | ⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ 𝑍 ) ) | ||
| cnmpt2res.9 | ⊢ ( 𝜑 → 𝑊 ⊆ 𝑍 ) | ||
| cnmpt2res.10 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑍 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝑀 ) Cn 𝐿 ) ) | ||
| Assertion | cnmpt2res | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑌 , 𝑦 ∈ 𝑊 ↦ 𝐴 ) ∈ ( ( 𝐾 ×t 𝑁 ) Cn 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt1res.2 | ⊢ 𝐾 = ( 𝐽 ↾t 𝑌 ) | |
| 2 | cnmpt1res.3 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 3 | cnmpt1res.5 | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) | |
| 4 | cnmpt2res.7 | ⊢ 𝑁 = ( 𝑀 ↾t 𝑊 ) | |
| 5 | cnmpt2res.8 | ⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ 𝑍 ) ) | |
| 6 | cnmpt2res.9 | ⊢ ( 𝜑 → 𝑊 ⊆ 𝑍 ) | |
| 7 | cnmpt2res.10 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑍 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝑀 ) Cn 𝐿 ) ) | |
| 8 | xpss12 | ⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑊 ⊆ 𝑍 ) → ( 𝑌 × 𝑊 ) ⊆ ( 𝑋 × 𝑍 ) ) | |
| 9 | 3 6 8 | syl2anc | ⊢ ( 𝜑 → ( 𝑌 × 𝑊 ) ⊆ ( 𝑋 × 𝑍 ) ) |
| 10 | txtopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ( TopOn ‘ 𝑍 ) ) → ( 𝐽 ×t 𝑀 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑍 ) ) ) | |
| 11 | 2 5 10 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ×t 𝑀 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑍 ) ) ) |
| 12 | toponuni | ⊢ ( ( 𝐽 ×t 𝑀 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑍 ) ) → ( 𝑋 × 𝑍 ) = ∪ ( 𝐽 ×t 𝑀 ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → ( 𝑋 × 𝑍 ) = ∪ ( 𝐽 ×t 𝑀 ) ) |
| 14 | 9 13 | sseqtrd | ⊢ ( 𝜑 → ( 𝑌 × 𝑊 ) ⊆ ∪ ( 𝐽 ×t 𝑀 ) ) |
| 15 | eqid | ⊢ ∪ ( 𝐽 ×t 𝑀 ) = ∪ ( 𝐽 ×t 𝑀 ) | |
| 16 | 15 | cnrest | ⊢ ( ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑍 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝑀 ) Cn 𝐿 ) ∧ ( 𝑌 × 𝑊 ) ⊆ ∪ ( 𝐽 ×t 𝑀 ) ) → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑌 × 𝑊 ) ) ∈ ( ( ( 𝐽 ×t 𝑀 ) ↾t ( 𝑌 × 𝑊 ) ) Cn 𝐿 ) ) |
| 17 | 7 14 16 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑌 × 𝑊 ) ) ∈ ( ( ( 𝐽 ×t 𝑀 ) ↾t ( 𝑌 × 𝑊 ) ) Cn 𝐿 ) ) |
| 18 | resmpo | ⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑊 ⊆ 𝑍 ) → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑌 × 𝑊 ) ) = ( 𝑥 ∈ 𝑌 , 𝑦 ∈ 𝑊 ↦ 𝐴 ) ) | |
| 19 | 3 6 18 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑌 × 𝑊 ) ) = ( 𝑥 ∈ 𝑌 , 𝑦 ∈ 𝑊 ↦ 𝐴 ) ) |
| 20 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 21 | 2 20 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 22 | topontop | ⊢ ( 𝑀 ∈ ( TopOn ‘ 𝑍 ) → 𝑀 ∈ Top ) | |
| 23 | 5 22 | syl | ⊢ ( 𝜑 → 𝑀 ∈ Top ) |
| 24 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 25 | 2 24 | syl | ⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
| 26 | 25 3 | ssexd | ⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 27 | toponmax | ⊢ ( 𝑀 ∈ ( TopOn ‘ 𝑍 ) → 𝑍 ∈ 𝑀 ) | |
| 28 | 5 27 | syl | ⊢ ( 𝜑 → 𝑍 ∈ 𝑀 ) |
| 29 | 28 6 | ssexd | ⊢ ( 𝜑 → 𝑊 ∈ V ) |
| 30 | txrest | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ Top ) ∧ ( 𝑌 ∈ V ∧ 𝑊 ∈ V ) ) → ( ( 𝐽 ×t 𝑀 ) ↾t ( 𝑌 × 𝑊 ) ) = ( ( 𝐽 ↾t 𝑌 ) ×t ( 𝑀 ↾t 𝑊 ) ) ) | |
| 31 | 21 23 26 29 30 | syl22anc | ⊢ ( 𝜑 → ( ( 𝐽 ×t 𝑀 ) ↾t ( 𝑌 × 𝑊 ) ) = ( ( 𝐽 ↾t 𝑌 ) ×t ( 𝑀 ↾t 𝑊 ) ) ) |
| 32 | 1 4 | oveq12i | ⊢ ( 𝐾 ×t 𝑁 ) = ( ( 𝐽 ↾t 𝑌 ) ×t ( 𝑀 ↾t 𝑊 ) ) |
| 33 | 31 32 | eqtr4di | ⊢ ( 𝜑 → ( ( 𝐽 ×t 𝑀 ) ↾t ( 𝑌 × 𝑊 ) ) = ( 𝐾 ×t 𝑁 ) ) |
| 34 | 33 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝐽 ×t 𝑀 ) ↾t ( 𝑌 × 𝑊 ) ) Cn 𝐿 ) = ( ( 𝐾 ×t 𝑁 ) Cn 𝐿 ) ) |
| 35 | 17 19 34 | 3eltr3d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑌 , 𝑦 ∈ 𝑊 ↦ 𝐴 ) ∈ ( ( 𝐾 ×t 𝑁 ) Cn 𝐿 ) ) |