This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group operation of a monoid of endofunctions is the function composition. (Contributed by AV, 27-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efmndtset.g | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| efmndplusg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| efmndplusg.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | efmndplusg | ⊢ + = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmndtset.g | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| 2 | efmndplusg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | efmndplusg.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | 1 2 | efmndbas | ⊢ 𝐵 = ( 𝐴 ↑m 𝐴 ) |
| 5 | eqid | ⊢ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) | |
| 6 | eqid | ⊢ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) | |
| 7 | 1 4 5 6 | efmnd | ⊢ ( 𝐴 ∈ V → 𝐺 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } ) |
| 8 | 7 | fveq2d | ⊢ ( 𝐴 ∈ V → ( +g ‘ 𝐺 ) = ( +g ‘ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } ) ) |
| 9 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 10 | 9 9 | mpoex | ⊢ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) ∈ V |
| 11 | eqid | ⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } | |
| 12 | 11 | topgrpplusg | ⊢ ( ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) ∈ V → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) = ( +g ‘ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } ) ) |
| 13 | 10 12 | ax-mp | ⊢ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) = ( +g ‘ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } ) |
| 14 | 8 3 13 | 3eqtr4g | ⊢ ( 𝐴 ∈ V → + = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) ) |
| 15 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( EndoFMnd ‘ 𝐴 ) = ∅ ) | |
| 16 | 1 15 | eqtrid | ⊢ ( ¬ 𝐴 ∈ V → 𝐺 = ∅ ) |
| 17 | 16 | fveq2d | ⊢ ( ¬ 𝐴 ∈ V → ( +g ‘ 𝐺 ) = ( +g ‘ ∅ ) ) |
| 18 | plusgid | ⊢ +g = Slot ( +g ‘ ndx ) | |
| 19 | 18 | str0 | ⊢ ∅ = ( +g ‘ ∅ ) |
| 20 | 17 3 19 | 3eqtr4g | ⊢ ( ¬ 𝐴 ∈ V → + = ∅ ) |
| 21 | 16 | fveq2d | ⊢ ( ¬ 𝐴 ∈ V → ( Base ‘ 𝐺 ) = ( Base ‘ ∅ ) ) |
| 22 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 23 | 21 2 22 | 3eqtr4g | ⊢ ( ¬ 𝐴 ∈ V → 𝐵 = ∅ ) |
| 24 | 23 | olcd | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐵 = ∅ ∨ 𝐵 = ∅ ) ) |
| 25 | 0mpo0 | ⊢ ( ( 𝐵 = ∅ ∨ 𝐵 = ∅ ) → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) = ∅ ) | |
| 26 | 24 25 | syl | ⊢ ( ¬ 𝐴 ∈ V → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) = ∅ ) |
| 27 | 20 26 | eqtr4d | ⊢ ( ¬ 𝐴 ∈ V → + = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) ) |
| 28 | 14 27 | pm2.61i | ⊢ + = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) |