This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two words A , B are related under the free group equivalence, then there exist two extension sequences a , b such that a ends at A , b ends at B , and a and B have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | ||
| efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | ||
| efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | ||
| efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | ||
| efgrelexlem.1 | ⊢ 𝐿 = { 〈 𝑖 , 𝑗 〉 ∣ ∃ 𝑐 ∈ ( ◡ 𝑆 “ { 𝑖 } ) ∃ 𝑑 ∈ ( ◡ 𝑆 “ { 𝑗 } ) ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) } | ||
| Assertion | efgrelexlemb | ⊢ ∼ ⊆ 𝐿 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 3 | efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 4 | efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 5 | efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | |
| 6 | efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | |
| 7 | efgrelexlem.1 | ⊢ 𝐿 = { 〈 𝑖 , 𝑗 〉 ∣ ∃ 𝑐 ∈ ( ◡ 𝑆 “ { 𝑖 } ) ∃ 𝑑 ∈ ( ◡ 𝑆 “ { 𝑗 } ) ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) } | |
| 8 | 1 2 3 4 | efgval2 | ⊢ ∼ = ∩ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) } |
| 9 | 7 | relopabiv | ⊢ Rel 𝐿 |
| 10 | 9 | a1i | ⊢ ( ⊤ → Rel 𝐿 ) |
| 11 | simpr | ⊢ ( ( ⊤ ∧ 𝑓 𝐿 𝑔 ) → 𝑓 𝐿 𝑔 ) | |
| 12 | eqcom | ⊢ ( ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ( 𝑏 ‘ 0 ) = ( 𝑎 ‘ 0 ) ) | |
| 13 | 12 | 2rexbii | ⊢ ( ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑏 ‘ 0 ) = ( 𝑎 ‘ 0 ) ) |
| 14 | rexcom | ⊢ ( ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑏 ‘ 0 ) = ( 𝑎 ‘ 0 ) ↔ ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ( 𝑏 ‘ 0 ) = ( 𝑎 ‘ 0 ) ) | |
| 15 | 13 14 | bitri | ⊢ ( ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ( 𝑏 ‘ 0 ) = ( 𝑎 ‘ 0 ) ) |
| 16 | 1 2 3 4 5 6 7 | efgrelexlema | ⊢ ( 𝑓 𝐿 𝑔 ↔ ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) |
| 17 | 1 2 3 4 5 6 7 | efgrelexlema | ⊢ ( 𝑔 𝐿 𝑓 ↔ ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ( 𝑏 ‘ 0 ) = ( 𝑎 ‘ 0 ) ) |
| 18 | 15 16 17 | 3bitr4i | ⊢ ( 𝑓 𝐿 𝑔 ↔ 𝑔 𝐿 𝑓 ) |
| 19 | 11 18 | sylib | ⊢ ( ( ⊤ ∧ 𝑓 𝐿 𝑔 ) → 𝑔 𝐿 𝑓 ) |
| 20 | 1 2 3 4 5 6 7 | efgrelexlema | ⊢ ( 𝑔 𝐿 ℎ ↔ ∃ 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) |
| 21 | reeanv | ⊢ ( ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ∧ ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ↔ ( ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ∧ ∃ 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ) | |
| 22 | 1 2 3 4 5 6 | efgsfo | ⊢ 𝑆 : dom 𝑆 –onto→ 𝑊 |
| 23 | fofn | ⊢ ( 𝑆 : dom 𝑆 –onto→ 𝑊 → 𝑆 Fn dom 𝑆 ) | |
| 24 | 22 23 | ax-mp | ⊢ 𝑆 Fn dom 𝑆 |
| 25 | fniniseg | ⊢ ( 𝑆 Fn dom 𝑆 → ( 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ↔ ( 𝑟 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑟 ) = 𝑔 ) ) ) | |
| 26 | 24 25 | ax-mp | ⊢ ( 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ↔ ( 𝑟 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑟 ) = 𝑔 ) ) |
| 27 | fniniseg | ⊢ ( 𝑆 Fn dom 𝑆 → ( 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ↔ ( 𝑏 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑏 ) = 𝑔 ) ) ) | |
| 28 | 24 27 | ax-mp | ⊢ ( 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ↔ ( 𝑏 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑏 ) = 𝑔 ) ) |
| 29 | eqtr3 | ⊢ ( ( ( 𝑆 ‘ 𝑟 ) = 𝑔 ∧ ( 𝑆 ‘ 𝑏 ) = 𝑔 ) → ( 𝑆 ‘ 𝑟 ) = ( 𝑆 ‘ 𝑏 ) ) | |
| 30 | 1 2 3 4 5 6 | efgred | ⊢ ( ( 𝑟 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑟 ) = ( 𝑆 ‘ 𝑏 ) ) → ( 𝑟 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) |
| 31 | 30 | eqcomd | ⊢ ( ( 𝑟 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑟 ) = ( 𝑆 ‘ 𝑏 ) ) → ( 𝑏 ‘ 0 ) = ( 𝑟 ‘ 0 ) ) |
| 32 | 31 | 3expa | ⊢ ( ( ( 𝑟 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆 ) ∧ ( 𝑆 ‘ 𝑟 ) = ( 𝑆 ‘ 𝑏 ) ) → ( 𝑏 ‘ 0 ) = ( 𝑟 ‘ 0 ) ) |
| 33 | 29 32 | sylan2 | ⊢ ( ( ( 𝑟 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆 ) ∧ ( ( 𝑆 ‘ 𝑟 ) = 𝑔 ∧ ( 𝑆 ‘ 𝑏 ) = 𝑔 ) ) → ( 𝑏 ‘ 0 ) = ( 𝑟 ‘ 0 ) ) |
| 34 | 33 | an4s | ⊢ ( ( ( 𝑟 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑟 ) = 𝑔 ) ∧ ( 𝑏 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑏 ) = 𝑔 ) ) → ( 𝑏 ‘ 0 ) = ( 𝑟 ‘ 0 ) ) |
| 35 | 26 28 34 | syl2anb | ⊢ ( ( 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ) → ( 𝑏 ‘ 0 ) = ( 𝑟 ‘ 0 ) ) |
| 36 | eqeq2 | ⊢ ( ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) → ( ( 𝑏 ‘ 0 ) = ( 𝑟 ‘ 0 ) ↔ ( 𝑏 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ) | |
| 37 | 35 36 | syl5ibcom | ⊢ ( ( 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ) → ( ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) → ( 𝑏 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ) |
| 38 | 37 | reximdv | ⊢ ( ( 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ) → ( ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) → ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑏 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ) |
| 39 | eqeq1 | ⊢ ( ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) → ( ( 𝑎 ‘ 0 ) = ( 𝑠 ‘ 0 ) ↔ ( 𝑏 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ) | |
| 40 | 39 | rexbidv | ⊢ ( ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) → ( ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑎 ‘ 0 ) = ( 𝑠 ‘ 0 ) ↔ ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑏 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ) |
| 41 | 40 | imbi2d | ⊢ ( ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) → ( ( ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) → ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑎 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ↔ ( ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) → ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑏 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ) ) |
| 42 | 38 41 | syl5ibrcom | ⊢ ( ( 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ) → ( ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) → ( ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) → ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑎 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ) ) |
| 43 | 42 | rexlimdva | ⊢ ( 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) → ( ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) → ( ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) → ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑎 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ) ) |
| 44 | 43 | impd | ⊢ ( 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) → ( ( ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ∧ ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) → ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑎 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ) |
| 45 | 44 | rexlimiv | ⊢ ( ∃ 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ∧ ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) → ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑎 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) |
| 46 | 45 | reximi | ⊢ ( ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ∧ ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) → ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑎 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) |
| 47 | 21 46 | sylbir | ⊢ ( ( ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ∧ ∃ 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) → ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑎 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) |
| 48 | 16 20 47 | syl2anb | ⊢ ( ( 𝑓 𝐿 𝑔 ∧ 𝑔 𝐿 ℎ ) → ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑎 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) |
| 49 | 1 2 3 4 5 6 7 | efgrelexlema | ⊢ ( 𝑓 𝐿 ℎ ↔ ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑎 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) |
| 50 | 48 49 | sylibr | ⊢ ( ( 𝑓 𝐿 𝑔 ∧ 𝑔 𝐿 ℎ ) → 𝑓 𝐿 ℎ ) |
| 51 | 50 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑓 𝐿 𝑔 ∧ 𝑔 𝐿 ℎ ) ) → 𝑓 𝐿 ℎ ) |
| 52 | eqid | ⊢ ( 𝑎 ‘ 0 ) = ( 𝑎 ‘ 0 ) | |
| 53 | fveq1 | ⊢ ( 𝑏 = 𝑎 → ( 𝑏 ‘ 0 ) = ( 𝑎 ‘ 0 ) ) | |
| 54 | 53 | rspceeqv | ⊢ ( ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∧ ( 𝑎 ‘ 0 ) = ( 𝑎 ‘ 0 ) ) → ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) |
| 55 | 52 54 | mpan2 | ⊢ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) → ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) |
| 56 | 55 | pm4.71i | ⊢ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ↔ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∧ ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) |
| 57 | fniniseg | ⊢ ( 𝑆 Fn dom 𝑆 → ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ↔ ( 𝑎 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑎 ) = 𝑓 ) ) ) | |
| 58 | 24 57 | ax-mp | ⊢ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ↔ ( 𝑎 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑎 ) = 𝑓 ) ) |
| 59 | 56 58 | bitr3i | ⊢ ( ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∧ ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ↔ ( 𝑎 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑎 ) = 𝑓 ) ) |
| 60 | 59 | rexbii2 | ⊢ ( ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ∃ 𝑎 ∈ dom 𝑆 ( 𝑆 ‘ 𝑎 ) = 𝑓 ) |
| 61 | 1 2 3 4 5 6 7 | efgrelexlema | ⊢ ( 𝑓 𝐿 𝑓 ↔ ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) |
| 62 | forn | ⊢ ( 𝑆 : dom 𝑆 –onto→ 𝑊 → ran 𝑆 = 𝑊 ) | |
| 63 | 22 62 | ax-mp | ⊢ ran 𝑆 = 𝑊 |
| 64 | 63 | eleq2i | ⊢ ( 𝑓 ∈ ran 𝑆 ↔ 𝑓 ∈ 𝑊 ) |
| 65 | fvelrnb | ⊢ ( 𝑆 Fn dom 𝑆 → ( 𝑓 ∈ ran 𝑆 ↔ ∃ 𝑎 ∈ dom 𝑆 ( 𝑆 ‘ 𝑎 ) = 𝑓 ) ) | |
| 66 | 24 65 | ax-mp | ⊢ ( 𝑓 ∈ ran 𝑆 ↔ ∃ 𝑎 ∈ dom 𝑆 ( 𝑆 ‘ 𝑎 ) = 𝑓 ) |
| 67 | 64 66 | bitr3i | ⊢ ( 𝑓 ∈ 𝑊 ↔ ∃ 𝑎 ∈ dom 𝑆 ( 𝑆 ‘ 𝑎 ) = 𝑓 ) |
| 68 | 60 61 67 | 3bitr4ri | ⊢ ( 𝑓 ∈ 𝑊 ↔ 𝑓 𝐿 𝑓 ) |
| 69 | 68 | a1i | ⊢ ( ⊤ → ( 𝑓 ∈ 𝑊 ↔ 𝑓 𝐿 𝑓 ) ) |
| 70 | 10 19 51 69 | iserd | ⊢ ( ⊤ → 𝐿 Er 𝑊 ) |
| 71 | 70 | mptru | ⊢ 𝐿 Er 𝑊 |
| 72 | simpl | ⊢ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) → 𝑎 ∈ 𝑊 ) | |
| 73 | foelrn | ⊢ ( ( 𝑆 : dom 𝑆 –onto→ 𝑊 ∧ 𝑎 ∈ 𝑊 ) → ∃ 𝑟 ∈ dom 𝑆 𝑎 = ( 𝑆 ‘ 𝑟 ) ) | |
| 74 | 22 72 73 | sylancr | ⊢ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) → ∃ 𝑟 ∈ dom 𝑆 𝑎 = ( 𝑆 ‘ 𝑟 ) ) |
| 75 | simprl | ⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → 𝑟 ∈ dom 𝑆 ) | |
| 76 | simprr | ⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → 𝑎 = ( 𝑆 ‘ 𝑟 ) ) | |
| 77 | 76 | eqcomd | ⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → ( 𝑆 ‘ 𝑟 ) = 𝑎 ) |
| 78 | fniniseg | ⊢ ( 𝑆 Fn dom 𝑆 → ( 𝑟 ∈ ( ◡ 𝑆 “ { 𝑎 } ) ↔ ( 𝑟 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑟 ) = 𝑎 ) ) ) | |
| 79 | 24 78 | ax-mp | ⊢ ( 𝑟 ∈ ( ◡ 𝑆 “ { 𝑎 } ) ↔ ( 𝑟 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑟 ) = 𝑎 ) ) |
| 80 | 75 77 79 | sylanbrc | ⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → 𝑟 ∈ ( ◡ 𝑆 “ { 𝑎 } ) ) |
| 81 | simplr | ⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) | |
| 82 | 76 | fveq2d | ⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → ( 𝑇 ‘ 𝑎 ) = ( 𝑇 ‘ ( 𝑆 ‘ 𝑟 ) ) ) |
| 83 | 82 | rneqd | ⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → ran ( 𝑇 ‘ 𝑎 ) = ran ( 𝑇 ‘ ( 𝑆 ‘ 𝑟 ) ) ) |
| 84 | 81 83 | eleqtrd | ⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → 𝑏 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝑟 ) ) ) |
| 85 | 1 2 3 4 5 6 | efgsp1 | ⊢ ( ( 𝑟 ∈ dom 𝑆 ∧ 𝑏 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝑟 ) ) ) → ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ∈ dom 𝑆 ) |
| 86 | 75 84 85 | syl2anc | ⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ∈ dom 𝑆 ) |
| 87 | 1 2 3 4 5 6 | efgsdm | ⊢ ( 𝑟 ∈ dom 𝑆 ↔ ( 𝑟 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝑟 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝑟 ) ) ( 𝑟 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝑟 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 88 | 87 | simp1bi | ⊢ ( 𝑟 ∈ dom 𝑆 → 𝑟 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 89 | 88 | ad2antrl | ⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → 𝑟 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 90 | 89 | eldifad | ⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → 𝑟 ∈ Word 𝑊 ) |
| 91 | 1 2 3 4 | efgtf | ⊢ ( 𝑎 ∈ 𝑊 → ( ( 𝑇 ‘ 𝑎 ) = ( 𝑓 ∈ ( 0 ... ( ♯ ‘ 𝑎 ) ) , 𝑔 ∈ ( 𝐼 × 2o ) ↦ ( 𝑎 splice 〈 𝑓 , 𝑓 , 〈“ 𝑔 ( 𝑀 ‘ 𝑔 ) ”〉 〉 ) ) ∧ ( 𝑇 ‘ 𝑎 ) : ( ( 0 ... ( ♯ ‘ 𝑎 ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) ) |
| 92 | 91 | simprd | ⊢ ( 𝑎 ∈ 𝑊 → ( 𝑇 ‘ 𝑎 ) : ( ( 0 ... ( ♯ ‘ 𝑎 ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) |
| 93 | 92 | frnd | ⊢ ( 𝑎 ∈ 𝑊 → ran ( 𝑇 ‘ 𝑎 ) ⊆ 𝑊 ) |
| 94 | 93 | sselda | ⊢ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) → 𝑏 ∈ 𝑊 ) |
| 95 | 94 | adantr | ⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → 𝑏 ∈ 𝑊 ) |
| 96 | 1 2 3 4 5 6 | efgsval2 | ⊢ ( ( 𝑟 ∈ Word 𝑊 ∧ 𝑏 ∈ 𝑊 ∧ ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ∈ dom 𝑆 ) → ( 𝑆 ‘ ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ) = 𝑏 ) |
| 97 | 90 95 86 96 | syl3anc | ⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → ( 𝑆 ‘ ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ) = 𝑏 ) |
| 98 | fniniseg | ⊢ ( 𝑆 Fn dom 𝑆 → ( ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ∈ ( ◡ 𝑆 “ { 𝑏 } ) ↔ ( ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ∈ dom 𝑆 ∧ ( 𝑆 ‘ ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ) = 𝑏 ) ) ) | |
| 99 | 24 98 | ax-mp | ⊢ ( ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ∈ ( ◡ 𝑆 “ { 𝑏 } ) ↔ ( ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ∈ dom 𝑆 ∧ ( 𝑆 ‘ ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ) = 𝑏 ) ) |
| 100 | 86 97 99 | sylanbrc | ⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ∈ ( ◡ 𝑆 “ { 𝑏 } ) ) |
| 101 | 95 | s1cld | ⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → 〈“ 𝑏 ”〉 ∈ Word 𝑊 ) |
| 102 | eldifsn | ⊢ ( 𝑟 ∈ ( Word 𝑊 ∖ { ∅ } ) ↔ ( 𝑟 ∈ Word 𝑊 ∧ 𝑟 ≠ ∅ ) ) | |
| 103 | lennncl | ⊢ ( ( 𝑟 ∈ Word 𝑊 ∧ 𝑟 ≠ ∅ ) → ( ♯ ‘ 𝑟 ) ∈ ℕ ) | |
| 104 | 102 103 | sylbi | ⊢ ( 𝑟 ∈ ( Word 𝑊 ∖ { ∅ } ) → ( ♯ ‘ 𝑟 ) ∈ ℕ ) |
| 105 | 89 104 | syl | ⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → ( ♯ ‘ 𝑟 ) ∈ ℕ ) |
| 106 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑟 ) ) ↔ ( ♯ ‘ 𝑟 ) ∈ ℕ ) | |
| 107 | 105 106 | sylibr | ⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑟 ) ) ) |
| 108 | ccatval1 | ⊢ ( ( 𝑟 ∈ Word 𝑊 ∧ 〈“ 𝑏 ”〉 ∈ Word 𝑊 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑟 ) ) ) → ( ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ‘ 0 ) = ( 𝑟 ‘ 0 ) ) | |
| 109 | 90 101 107 108 | syl3anc | ⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → ( ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ‘ 0 ) = ( 𝑟 ‘ 0 ) ) |
| 110 | 109 | eqcomd | ⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → ( 𝑟 ‘ 0 ) = ( ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ‘ 0 ) ) |
| 111 | fveq1 | ⊢ ( 𝑠 = ( 𝑟 ++ 〈“ 𝑏 ”〉 ) → ( 𝑠 ‘ 0 ) = ( ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ‘ 0 ) ) | |
| 112 | 111 | rspceeqv | ⊢ ( ( ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ∈ ( ◡ 𝑆 “ { 𝑏 } ) ∧ ( 𝑟 ‘ 0 ) = ( ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ‘ 0 ) ) → ∃ 𝑠 ∈ ( ◡ 𝑆 “ { 𝑏 } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) |
| 113 | 100 110 112 | syl2anc | ⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → ∃ 𝑠 ∈ ( ◡ 𝑆 “ { 𝑏 } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) |
| 114 | 74 80 113 | reximssdv | ⊢ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) → ∃ 𝑟 ∈ ( ◡ 𝑆 “ { 𝑎 } ) ∃ 𝑠 ∈ ( ◡ 𝑆 “ { 𝑏 } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) |
| 115 | 1 2 3 4 5 6 7 | efgrelexlema | ⊢ ( 𝑎 𝐿 𝑏 ↔ ∃ 𝑟 ∈ ( ◡ 𝑆 “ { 𝑎 } ) ∃ 𝑠 ∈ ( ◡ 𝑆 “ { 𝑏 } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) |
| 116 | 114 115 | sylibr | ⊢ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) → 𝑎 𝐿 𝑏 ) |
| 117 | vex | ⊢ 𝑏 ∈ V | |
| 118 | vex | ⊢ 𝑎 ∈ V | |
| 119 | 117 118 | elec | ⊢ ( 𝑏 ∈ [ 𝑎 ] 𝐿 ↔ 𝑎 𝐿 𝑏 ) |
| 120 | 116 119 | sylibr | ⊢ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) → 𝑏 ∈ [ 𝑎 ] 𝐿 ) |
| 121 | 120 | ex | ⊢ ( 𝑎 ∈ 𝑊 → ( 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) → 𝑏 ∈ [ 𝑎 ] 𝐿 ) ) |
| 122 | 121 | ssrdv | ⊢ ( 𝑎 ∈ 𝑊 → ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝐿 ) |
| 123 | 122 | rgen | ⊢ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝐿 |
| 124 | 1 | fvexi | ⊢ 𝑊 ∈ V |
| 125 | erex | ⊢ ( 𝐿 Er 𝑊 → ( 𝑊 ∈ V → 𝐿 ∈ V ) ) | |
| 126 | 71 124 125 | mp2 | ⊢ 𝐿 ∈ V |
| 127 | ereq1 | ⊢ ( 𝑟 = 𝐿 → ( 𝑟 Er 𝑊 ↔ 𝐿 Er 𝑊 ) ) | |
| 128 | eceq2 | ⊢ ( 𝑟 = 𝐿 → [ 𝑎 ] 𝑟 = [ 𝑎 ] 𝐿 ) | |
| 129 | 128 | sseq2d | ⊢ ( 𝑟 = 𝐿 → ( ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ↔ ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝐿 ) ) |
| 130 | 129 | ralbidv | ⊢ ( 𝑟 = 𝐿 → ( ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ↔ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝐿 ) ) |
| 131 | 127 130 | anbi12d | ⊢ ( 𝑟 = 𝐿 → ( ( 𝑟 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) ↔ ( 𝐿 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝐿 ) ) ) |
| 132 | 126 131 | elab | ⊢ ( 𝐿 ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) } ↔ ( 𝐿 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝐿 ) ) |
| 133 | 71 123 132 | mpbir2an | ⊢ 𝐿 ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) } |
| 134 | intss1 | ⊢ ( 𝐿 ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) } → ∩ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) } ⊆ 𝐿 ) | |
| 135 | 133 134 | ax-mp | ⊢ ∩ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) } ⊆ 𝐿 |
| 136 | 8 135 | eqsstri | ⊢ ∼ ⊆ 𝐿 |