This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl2anb.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| syl2anb.2 | ⊢ ( 𝜏 ↔ 𝜒 ) | ||
| syl2anb.3 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) | ||
| Assertion | syl2anb | ⊢ ( ( 𝜑 ∧ 𝜏 ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anb.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| 2 | syl2anb.2 | ⊢ ( 𝜏 ↔ 𝜒 ) | |
| 3 | syl2anb.3 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) | |
| 4 | 1 3 | sylanb | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) |
| 5 | 2 4 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝜏 ) → 𝜃 ) |