This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any word, there is a sequence of extensions starting at a reduced word and ending at the target word, such that each word in the chain is an extension of the previous (inserting an element and its inverse at adjacent indices somewhere in the sequence). (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | ||
| efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | ||
| efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | ||
| efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | ||
| Assertion | efgsfo | ⊢ 𝑆 : dom 𝑆 –onto→ 𝑊 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 3 | efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 4 | efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 5 | efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | |
| 6 | efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | |
| 7 | 1 2 3 4 5 6 | efgsf | ⊢ 𝑆 : { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ⟶ 𝑊 |
| 8 | 7 | fdmi | ⊢ dom 𝑆 = { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } |
| 9 | 8 | feq2i | ⊢ ( 𝑆 : dom 𝑆 ⟶ 𝑊 ↔ 𝑆 : { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ⟶ 𝑊 ) |
| 10 | 7 9 | mpbir | ⊢ 𝑆 : dom 𝑆 ⟶ 𝑊 |
| 11 | frn | ⊢ ( 𝑆 : dom 𝑆 ⟶ 𝑊 → ran 𝑆 ⊆ 𝑊 ) | |
| 12 | 10 11 | ax-mp | ⊢ ran 𝑆 ⊆ 𝑊 |
| 13 | fviss | ⊢ ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o ) | |
| 14 | 1 13 | eqsstri | ⊢ 𝑊 ⊆ Word ( 𝐼 × 2o ) |
| 15 | 14 | sseli | ⊢ ( 𝑐 ∈ 𝑊 → 𝑐 ∈ Word ( 𝐼 × 2o ) ) |
| 16 | lencl | ⊢ ( 𝑐 ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ 𝑐 ) ∈ ℕ0 ) | |
| 17 | 15 16 | syl | ⊢ ( 𝑐 ∈ 𝑊 → ( ♯ ‘ 𝑐 ) ∈ ℕ0 ) |
| 18 | peano2nn0 | ⊢ ( ( ♯ ‘ 𝑐 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑐 ) + 1 ) ∈ ℕ0 ) | |
| 19 | 14 | sseli | ⊢ ( 𝑎 ∈ 𝑊 → 𝑎 ∈ Word ( 𝐼 × 2o ) ) |
| 20 | lencl | ⊢ ( 𝑎 ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ 𝑎 ) ∈ ℕ0 ) | |
| 21 | 19 20 | syl | ⊢ ( 𝑎 ∈ 𝑊 → ( ♯ ‘ 𝑎 ) ∈ ℕ0 ) |
| 22 | nn0nlt0 | ⊢ ( ( ♯ ‘ 𝑎 ) ∈ ℕ0 → ¬ ( ♯ ‘ 𝑎 ) < 0 ) | |
| 23 | breq2 | ⊢ ( 𝑏 = 0 → ( ( ♯ ‘ 𝑎 ) < 𝑏 ↔ ( ♯ ‘ 𝑎 ) < 0 ) ) | |
| 24 | 23 | notbid | ⊢ ( 𝑏 = 0 → ( ¬ ( ♯ ‘ 𝑎 ) < 𝑏 ↔ ¬ ( ♯ ‘ 𝑎 ) < 0 ) ) |
| 25 | 22 24 | imbitrrid | ⊢ ( 𝑏 = 0 → ( ( ♯ ‘ 𝑎 ) ∈ ℕ0 → ¬ ( ♯ ‘ 𝑎 ) < 𝑏 ) ) |
| 26 | 21 25 | syl5 | ⊢ ( 𝑏 = 0 → ( 𝑎 ∈ 𝑊 → ¬ ( ♯ ‘ 𝑎 ) < 𝑏 ) ) |
| 27 | 26 | ralrimiv | ⊢ ( 𝑏 = 0 → ∀ 𝑎 ∈ 𝑊 ¬ ( ♯ ‘ 𝑎 ) < 𝑏 ) |
| 28 | rabeq0 | ⊢ ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑏 } = ∅ ↔ ∀ 𝑎 ∈ 𝑊 ¬ ( ♯ ‘ 𝑎 ) < 𝑏 ) | |
| 29 | 27 28 | sylibr | ⊢ ( 𝑏 = 0 → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑏 } = ∅ ) |
| 30 | 29 | sseq1d | ⊢ ( 𝑏 = 0 → ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑏 } ⊆ ran 𝑆 ↔ ∅ ⊆ ran 𝑆 ) ) |
| 31 | breq2 | ⊢ ( 𝑏 = 𝑑 → ( ( ♯ ‘ 𝑎 ) < 𝑏 ↔ ( ♯ ‘ 𝑎 ) < 𝑑 ) ) | |
| 32 | 31 | rabbidv | ⊢ ( 𝑏 = 𝑑 → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑏 } = { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ) |
| 33 | 32 | sseq1d | ⊢ ( 𝑏 = 𝑑 → ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑏 } ⊆ ran 𝑆 ↔ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ) |
| 34 | breq2 | ⊢ ( 𝑏 = ( 𝑑 + 1 ) → ( ( ♯ ‘ 𝑎 ) < 𝑏 ↔ ( ♯ ‘ 𝑎 ) < ( 𝑑 + 1 ) ) ) | |
| 35 | 34 | rabbidv | ⊢ ( 𝑏 = ( 𝑑 + 1 ) → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑏 } = { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < ( 𝑑 + 1 ) } ) |
| 36 | 35 | sseq1d | ⊢ ( 𝑏 = ( 𝑑 + 1 ) → ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑏 } ⊆ ran 𝑆 ↔ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < ( 𝑑 + 1 ) } ⊆ ran 𝑆 ) ) |
| 37 | breq2 | ⊢ ( 𝑏 = ( ( ♯ ‘ 𝑐 ) + 1 ) → ( ( ♯ ‘ 𝑎 ) < 𝑏 ↔ ( ♯ ‘ 𝑎 ) < ( ( ♯ ‘ 𝑐 ) + 1 ) ) ) | |
| 38 | 37 | rabbidv | ⊢ ( 𝑏 = ( ( ♯ ‘ 𝑐 ) + 1 ) → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑏 } = { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < ( ( ♯ ‘ 𝑐 ) + 1 ) } ) |
| 39 | 38 | sseq1d | ⊢ ( 𝑏 = ( ( ♯ ‘ 𝑐 ) + 1 ) → ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑏 } ⊆ ran 𝑆 ↔ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < ( ( ♯ ‘ 𝑐 ) + 1 ) } ⊆ ran 𝑆 ) ) |
| 40 | 0ss | ⊢ ∅ ⊆ ran 𝑆 | |
| 41 | simpr | ⊢ ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) | |
| 42 | fveqeq2 | ⊢ ( 𝑎 = 𝑐 → ( ( ♯ ‘ 𝑎 ) = 𝑑 ↔ ( ♯ ‘ 𝑐 ) = 𝑑 ) ) | |
| 43 | 42 | cbvrabv | ⊢ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) = 𝑑 } = { 𝑐 ∈ 𝑊 ∣ ( ♯ ‘ 𝑐 ) = 𝑑 } |
| 44 | eliun | ⊢ ( 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝑊 𝑐 ∈ ran ( 𝑇 ‘ 𝑥 ) ) | |
| 45 | fveq2 | ⊢ ( 𝑥 = 𝑏 → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑏 ) ) | |
| 46 | 45 | rneqd | ⊢ ( 𝑥 = 𝑏 → ran ( 𝑇 ‘ 𝑥 ) = ran ( 𝑇 ‘ 𝑏 ) ) |
| 47 | 46 | eleq2d | ⊢ ( 𝑥 = 𝑏 → ( 𝑐 ∈ ran ( 𝑇 ‘ 𝑥 ) ↔ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) |
| 48 | 47 | cbvrexvw | ⊢ ( ∃ 𝑥 ∈ 𝑊 𝑐 ∈ ran ( 𝑇 ‘ 𝑥 ) ↔ ∃ 𝑏 ∈ 𝑊 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) |
| 49 | 44 48 | bitri | ⊢ ( 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ↔ ∃ 𝑏 ∈ 𝑊 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) |
| 50 | simpl1r | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) | |
| 51 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( ♯ ‘ 𝑎 ) = ( ♯ ‘ 𝑏 ) ) | |
| 52 | 51 | breq1d | ⊢ ( 𝑎 = 𝑏 → ( ( ♯ ‘ 𝑎 ) < 𝑑 ↔ ( ♯ ‘ 𝑏 ) < 𝑑 ) ) |
| 53 | simprl | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → 𝑏 ∈ 𝑊 ) | |
| 54 | 14 53 | sselid | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → 𝑏 ∈ Word ( 𝐼 × 2o ) ) |
| 55 | lencl | ⊢ ( 𝑏 ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ 𝑏 ) ∈ ℕ0 ) | |
| 56 | 54 55 | syl | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → ( ♯ ‘ 𝑏 ) ∈ ℕ0 ) |
| 57 | 56 | nn0red | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → ( ♯ ‘ 𝑏 ) ∈ ℝ ) |
| 58 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 59 | ltaddrp | ⊢ ( ( ( ♯ ‘ 𝑏 ) ∈ ℝ ∧ 2 ∈ ℝ+ ) → ( ♯ ‘ 𝑏 ) < ( ( ♯ ‘ 𝑏 ) + 2 ) ) | |
| 60 | 57 58 59 | sylancl | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → ( ♯ ‘ 𝑏 ) < ( ( ♯ ‘ 𝑏 ) + 2 ) ) |
| 61 | 1 2 3 4 | efgtlen | ⊢ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) → ( ♯ ‘ 𝑐 ) = ( ( ♯ ‘ 𝑏 ) + 2 ) ) |
| 62 | 61 | adantl | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → ( ♯ ‘ 𝑐 ) = ( ( ♯ ‘ 𝑏 ) + 2 ) ) |
| 63 | simpl3 | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → ( ♯ ‘ 𝑐 ) = 𝑑 ) | |
| 64 | 62 63 | eqtr3d | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → ( ( ♯ ‘ 𝑏 ) + 2 ) = 𝑑 ) |
| 65 | 60 64 | breqtrd | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → ( ♯ ‘ 𝑏 ) < 𝑑 ) |
| 66 | 52 53 65 | elrabd | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → 𝑏 ∈ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ) |
| 67 | 50 66 | sseldd | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → 𝑏 ∈ ran 𝑆 ) |
| 68 | ffn | ⊢ ( 𝑆 : dom 𝑆 ⟶ 𝑊 → 𝑆 Fn dom 𝑆 ) | |
| 69 | 10 68 | ax-mp | ⊢ 𝑆 Fn dom 𝑆 |
| 70 | fvelrnb | ⊢ ( 𝑆 Fn dom 𝑆 → ( 𝑏 ∈ ran 𝑆 ↔ ∃ 𝑜 ∈ dom 𝑆 ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) | |
| 71 | 69 70 | ax-mp | ⊢ ( 𝑏 ∈ ran 𝑆 ↔ ∃ 𝑜 ∈ dom 𝑆 ( 𝑆 ‘ 𝑜 ) = 𝑏 ) |
| 72 | 67 71 | sylib | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → ∃ 𝑜 ∈ dom 𝑆 ( 𝑆 ‘ 𝑜 ) = 𝑏 ) |
| 73 | simprrl | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → 𝑜 ∈ dom 𝑆 ) | |
| 74 | 1 2 3 4 5 6 | efgsdm | ⊢ ( 𝑜 ∈ dom 𝑆 ↔ ( 𝑜 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝑜 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝑜 ) ) ( 𝑜 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝑜 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 75 | 74 | simp1bi | ⊢ ( 𝑜 ∈ dom 𝑆 → 𝑜 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 76 | eldifi | ⊢ ( 𝑜 ∈ ( Word 𝑊 ∖ { ∅ } ) → 𝑜 ∈ Word 𝑊 ) | |
| 77 | 73 75 76 | 3syl | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → 𝑜 ∈ Word 𝑊 ) |
| 78 | simpl2 | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → 𝑐 ∈ 𝑊 ) | |
| 79 | simprlr | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) | |
| 80 | simprrr | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → ( 𝑆 ‘ 𝑜 ) = 𝑏 ) | |
| 81 | 80 | fveq2d | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → ( 𝑇 ‘ ( 𝑆 ‘ 𝑜 ) ) = ( 𝑇 ‘ 𝑏 ) ) |
| 82 | 81 | rneqd | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → ran ( 𝑇 ‘ ( 𝑆 ‘ 𝑜 ) ) = ran ( 𝑇 ‘ 𝑏 ) ) |
| 83 | 79 82 | eleqtrrd | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → 𝑐 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝑜 ) ) ) |
| 84 | 1 2 3 4 5 6 | efgsp1 | ⊢ ( ( 𝑜 ∈ dom 𝑆 ∧ 𝑐 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝑜 ) ) ) → ( 𝑜 ++ 〈“ 𝑐 ”〉 ) ∈ dom 𝑆 ) |
| 85 | 73 83 84 | syl2anc | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → ( 𝑜 ++ 〈“ 𝑐 ”〉 ) ∈ dom 𝑆 ) |
| 86 | 1 2 3 4 5 6 | efgsval2 | ⊢ ( ( 𝑜 ∈ Word 𝑊 ∧ 𝑐 ∈ 𝑊 ∧ ( 𝑜 ++ 〈“ 𝑐 ”〉 ) ∈ dom 𝑆 ) → ( 𝑆 ‘ ( 𝑜 ++ 〈“ 𝑐 ”〉 ) ) = 𝑐 ) |
| 87 | 77 78 85 86 | syl3anc | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → ( 𝑆 ‘ ( 𝑜 ++ 〈“ 𝑐 ”〉 ) ) = 𝑐 ) |
| 88 | fnfvelrn | ⊢ ( ( 𝑆 Fn dom 𝑆 ∧ ( 𝑜 ++ 〈“ 𝑐 ”〉 ) ∈ dom 𝑆 ) → ( 𝑆 ‘ ( 𝑜 ++ 〈“ 𝑐 ”〉 ) ) ∈ ran 𝑆 ) | |
| 89 | 69 85 88 | sylancr | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → ( 𝑆 ‘ ( 𝑜 ++ 〈“ 𝑐 ”〉 ) ) ∈ ran 𝑆 ) |
| 90 | 87 89 | eqeltrrd | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → 𝑐 ∈ ran 𝑆 ) |
| 91 | 90 | anassrs | ⊢ ( ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) → 𝑐 ∈ ran 𝑆 ) |
| 92 | 72 91 | rexlimddv | ⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → 𝑐 ∈ ran 𝑆 ) |
| 93 | 92 | rexlimdvaa | ⊢ ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) → ( ∃ 𝑏 ∈ 𝑊 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) → 𝑐 ∈ ran 𝑆 ) ) |
| 94 | 49 93 | biimtrid | ⊢ ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) → ( 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) → 𝑐 ∈ ran 𝑆 ) ) |
| 95 | eldif | ⊢ ( 𝑐 ∈ ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) ↔ ( 𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) ) | |
| 96 | 5 | eleq2i | ⊢ ( 𝑐 ∈ 𝐷 ↔ 𝑐 ∈ ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) ) |
| 97 | 1 2 3 4 5 6 | efgs1 | ⊢ ( 𝑐 ∈ 𝐷 → 〈“ 𝑐 ”〉 ∈ dom 𝑆 ) |
| 98 | 96 97 | sylbir | ⊢ ( 𝑐 ∈ ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) → 〈“ 𝑐 ”〉 ∈ dom 𝑆 ) |
| 99 | 95 98 | sylbir | ⊢ ( ( 𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) → 〈“ 𝑐 ”〉 ∈ dom 𝑆 ) |
| 100 | 1 2 3 4 5 6 | efgsval | ⊢ ( 〈“ 𝑐 ”〉 ∈ dom 𝑆 → ( 𝑆 ‘ 〈“ 𝑐 ”〉 ) = ( 〈“ 𝑐 ”〉 ‘ ( ( ♯ ‘ 〈“ 𝑐 ”〉 ) − 1 ) ) ) |
| 101 | 99 100 | syl | ⊢ ( ( 𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) → ( 𝑆 ‘ 〈“ 𝑐 ”〉 ) = ( 〈“ 𝑐 ”〉 ‘ ( ( ♯ ‘ 〈“ 𝑐 ”〉 ) − 1 ) ) ) |
| 102 | s1len | ⊢ ( ♯ ‘ 〈“ 𝑐 ”〉 ) = 1 | |
| 103 | 102 | oveq1i | ⊢ ( ( ♯ ‘ 〈“ 𝑐 ”〉 ) − 1 ) = ( 1 − 1 ) |
| 104 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 105 | 103 104 | eqtri | ⊢ ( ( ♯ ‘ 〈“ 𝑐 ”〉 ) − 1 ) = 0 |
| 106 | 105 | fveq2i | ⊢ ( 〈“ 𝑐 ”〉 ‘ ( ( ♯ ‘ 〈“ 𝑐 ”〉 ) − 1 ) ) = ( 〈“ 𝑐 ”〉 ‘ 0 ) |
| 107 | 106 | a1i | ⊢ ( ( 𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) → ( 〈“ 𝑐 ”〉 ‘ ( ( ♯ ‘ 〈“ 𝑐 ”〉 ) − 1 ) ) = ( 〈“ 𝑐 ”〉 ‘ 0 ) ) |
| 108 | s1fv | ⊢ ( 𝑐 ∈ 𝑊 → ( 〈“ 𝑐 ”〉 ‘ 0 ) = 𝑐 ) | |
| 109 | 108 | adantr | ⊢ ( ( 𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) → ( 〈“ 𝑐 ”〉 ‘ 0 ) = 𝑐 ) |
| 110 | 101 107 109 | 3eqtrd | ⊢ ( ( 𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) → ( 𝑆 ‘ 〈“ 𝑐 ”〉 ) = 𝑐 ) |
| 111 | fnfvelrn | ⊢ ( ( 𝑆 Fn dom 𝑆 ∧ 〈“ 𝑐 ”〉 ∈ dom 𝑆 ) → ( 𝑆 ‘ 〈“ 𝑐 ”〉 ) ∈ ran 𝑆 ) | |
| 112 | 69 99 111 | sylancr | ⊢ ( ( 𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) → ( 𝑆 ‘ 〈“ 𝑐 ”〉 ) ∈ ran 𝑆 ) |
| 113 | 110 112 | eqeltrrd | ⊢ ( ( 𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) → 𝑐 ∈ ran 𝑆 ) |
| 114 | 113 | ex | ⊢ ( 𝑐 ∈ 𝑊 → ( ¬ 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) → 𝑐 ∈ ran 𝑆 ) ) |
| 115 | 114 | 3ad2ant2 | ⊢ ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) → ( ¬ 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) → 𝑐 ∈ ran 𝑆 ) ) |
| 116 | 94 115 | pm2.61d | ⊢ ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) → 𝑐 ∈ ran 𝑆 ) |
| 117 | 116 | rabssdv | ⊢ ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) → { 𝑐 ∈ 𝑊 ∣ ( ♯ ‘ 𝑐 ) = 𝑑 } ⊆ ran 𝑆 ) |
| 118 | 43 117 | eqsstrid | ⊢ ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) = 𝑑 } ⊆ ran 𝑆 ) |
| 119 | 41 118 | unssd | ⊢ ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) → ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ∪ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) = 𝑑 } ) ⊆ ran 𝑆 ) |
| 120 | 119 | ex | ⊢ ( 𝑑 ∈ ℕ0 → ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 → ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ∪ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) = 𝑑 } ) ⊆ ran 𝑆 ) ) |
| 121 | id | ⊢ ( 𝑑 ∈ ℕ0 → 𝑑 ∈ ℕ0 ) | |
| 122 | nn0leltp1 | ⊢ ( ( ( ♯ ‘ 𝑎 ) ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑎 ) ≤ 𝑑 ↔ ( ♯ ‘ 𝑎 ) < ( 𝑑 + 1 ) ) ) | |
| 123 | 21 121 122 | syl2anr | ⊢ ( ( 𝑑 ∈ ℕ0 ∧ 𝑎 ∈ 𝑊 ) → ( ( ♯ ‘ 𝑎 ) ≤ 𝑑 ↔ ( ♯ ‘ 𝑎 ) < ( 𝑑 + 1 ) ) ) |
| 124 | 21 | nn0red | ⊢ ( 𝑎 ∈ 𝑊 → ( ♯ ‘ 𝑎 ) ∈ ℝ ) |
| 125 | nn0re | ⊢ ( 𝑑 ∈ ℕ0 → 𝑑 ∈ ℝ ) | |
| 126 | leloe | ⊢ ( ( ( ♯ ‘ 𝑎 ) ∈ ℝ ∧ 𝑑 ∈ ℝ ) → ( ( ♯ ‘ 𝑎 ) ≤ 𝑑 ↔ ( ( ♯ ‘ 𝑎 ) < 𝑑 ∨ ( ♯ ‘ 𝑎 ) = 𝑑 ) ) ) | |
| 127 | 124 125 126 | syl2anr | ⊢ ( ( 𝑑 ∈ ℕ0 ∧ 𝑎 ∈ 𝑊 ) → ( ( ♯ ‘ 𝑎 ) ≤ 𝑑 ↔ ( ( ♯ ‘ 𝑎 ) < 𝑑 ∨ ( ♯ ‘ 𝑎 ) = 𝑑 ) ) ) |
| 128 | 123 127 | bitr3d | ⊢ ( ( 𝑑 ∈ ℕ0 ∧ 𝑎 ∈ 𝑊 ) → ( ( ♯ ‘ 𝑎 ) < ( 𝑑 + 1 ) ↔ ( ( ♯ ‘ 𝑎 ) < 𝑑 ∨ ( ♯ ‘ 𝑎 ) = 𝑑 ) ) ) |
| 129 | 128 | rabbidva | ⊢ ( 𝑑 ∈ ℕ0 → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < ( 𝑑 + 1 ) } = { 𝑎 ∈ 𝑊 ∣ ( ( ♯ ‘ 𝑎 ) < 𝑑 ∨ ( ♯ ‘ 𝑎 ) = 𝑑 ) } ) |
| 130 | unrab | ⊢ ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ∪ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) = 𝑑 } ) = { 𝑎 ∈ 𝑊 ∣ ( ( ♯ ‘ 𝑎 ) < 𝑑 ∨ ( ♯ ‘ 𝑎 ) = 𝑑 ) } | |
| 131 | 129 130 | eqtr4di | ⊢ ( 𝑑 ∈ ℕ0 → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < ( 𝑑 + 1 ) } = ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ∪ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) = 𝑑 } ) ) |
| 132 | 131 | sseq1d | ⊢ ( 𝑑 ∈ ℕ0 → ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < ( 𝑑 + 1 ) } ⊆ ran 𝑆 ↔ ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ∪ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) = 𝑑 } ) ⊆ ran 𝑆 ) ) |
| 133 | 120 132 | sylibrd | ⊢ ( 𝑑 ∈ ℕ0 → ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < ( 𝑑 + 1 ) } ⊆ ran 𝑆 ) ) |
| 134 | 30 33 36 39 40 133 | nn0ind | ⊢ ( ( ( ♯ ‘ 𝑐 ) + 1 ) ∈ ℕ0 → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < ( ( ♯ ‘ 𝑐 ) + 1 ) } ⊆ ran 𝑆 ) |
| 135 | 17 18 134 | 3syl | ⊢ ( 𝑐 ∈ 𝑊 → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < ( ( ♯ ‘ 𝑐 ) + 1 ) } ⊆ ran 𝑆 ) |
| 136 | fveq2 | ⊢ ( 𝑎 = 𝑐 → ( ♯ ‘ 𝑎 ) = ( ♯ ‘ 𝑐 ) ) | |
| 137 | 136 | breq1d | ⊢ ( 𝑎 = 𝑐 → ( ( ♯ ‘ 𝑎 ) < ( ( ♯ ‘ 𝑐 ) + 1 ) ↔ ( ♯ ‘ 𝑐 ) < ( ( ♯ ‘ 𝑐 ) + 1 ) ) ) |
| 138 | id | ⊢ ( 𝑐 ∈ 𝑊 → 𝑐 ∈ 𝑊 ) | |
| 139 | 17 | nn0red | ⊢ ( 𝑐 ∈ 𝑊 → ( ♯ ‘ 𝑐 ) ∈ ℝ ) |
| 140 | 139 | ltp1d | ⊢ ( 𝑐 ∈ 𝑊 → ( ♯ ‘ 𝑐 ) < ( ( ♯ ‘ 𝑐 ) + 1 ) ) |
| 141 | 137 138 140 | elrabd | ⊢ ( 𝑐 ∈ 𝑊 → 𝑐 ∈ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < ( ( ♯ ‘ 𝑐 ) + 1 ) } ) |
| 142 | 135 141 | sseldd | ⊢ ( 𝑐 ∈ 𝑊 → 𝑐 ∈ ran 𝑆 ) |
| 143 | 142 | ssriv | ⊢ 𝑊 ⊆ ran 𝑆 |
| 144 | 12 143 | eqssi | ⊢ ran 𝑆 = 𝑊 |
| 145 | dffo2 | ⊢ ( 𝑆 : dom 𝑆 –onto→ 𝑊 ↔ ( 𝑆 : dom 𝑆 ⟶ 𝑊 ∧ ran 𝑆 = 𝑊 ) ) | |
| 146 | 10 144 145 | mpbir2an | ⊢ 𝑆 : dom 𝑆 –onto→ 𝑊 |