This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two words A , B are related under the free group equivalence, then there exist two extension sequences a , b such that a ends at A , b ends at B , and a and B have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| efgval.r | |- .~ = ( ~FG ` I ) |
||
| efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
||
| efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
||
| efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
||
| efgrelexlem.1 | |- L = { <. i , j >. | E. c e. ( `' S " { i } ) E. d e. ( `' S " { j } ) ( c ` 0 ) = ( d ` 0 ) } |
||
| Assertion | efgrelexlemb | |- .~ C_ L |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | efgval.r | |- .~ = ( ~FG ` I ) |
|
| 3 | efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 4 | efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 5 | efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
|
| 6 | efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
|
| 7 | efgrelexlem.1 | |- L = { <. i , j >. | E. c e. ( `' S " { i } ) E. d e. ( `' S " { j } ) ( c ` 0 ) = ( d ` 0 ) } |
|
| 8 | 1 2 3 4 | efgval2 | |- .~ = |^| { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } |
| 9 | 7 | relopabiv | |- Rel L |
| 10 | 9 | a1i | |- ( T. -> Rel L ) |
| 11 | simpr | |- ( ( T. /\ f L g ) -> f L g ) |
|
| 12 | eqcom | |- ( ( a ` 0 ) = ( b ` 0 ) <-> ( b ` 0 ) = ( a ` 0 ) ) |
|
| 13 | 12 | 2rexbii | |- ( E. a e. ( `' S " { f } ) E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) <-> E. a e. ( `' S " { f } ) E. b e. ( `' S " { g } ) ( b ` 0 ) = ( a ` 0 ) ) |
| 14 | rexcom | |- ( E. a e. ( `' S " { f } ) E. b e. ( `' S " { g } ) ( b ` 0 ) = ( a ` 0 ) <-> E. b e. ( `' S " { g } ) E. a e. ( `' S " { f } ) ( b ` 0 ) = ( a ` 0 ) ) |
|
| 15 | 13 14 | bitri | |- ( E. a e. ( `' S " { f } ) E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) <-> E. b e. ( `' S " { g } ) E. a e. ( `' S " { f } ) ( b ` 0 ) = ( a ` 0 ) ) |
| 16 | 1 2 3 4 5 6 7 | efgrelexlema | |- ( f L g <-> E. a e. ( `' S " { f } ) E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) ) |
| 17 | 1 2 3 4 5 6 7 | efgrelexlema | |- ( g L f <-> E. b e. ( `' S " { g } ) E. a e. ( `' S " { f } ) ( b ` 0 ) = ( a ` 0 ) ) |
| 18 | 15 16 17 | 3bitr4i | |- ( f L g <-> g L f ) |
| 19 | 11 18 | sylib | |- ( ( T. /\ f L g ) -> g L f ) |
| 20 | 1 2 3 4 5 6 7 | efgrelexlema | |- ( g L h <-> E. r e. ( `' S " { g } ) E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) ) |
| 21 | reeanv | |- ( E. a e. ( `' S " { f } ) E. r e. ( `' S " { g } ) ( E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) /\ E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) ) <-> ( E. a e. ( `' S " { f } ) E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) /\ E. r e. ( `' S " { g } ) E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) ) ) |
|
| 22 | 1 2 3 4 5 6 | efgsfo | |- S : dom S -onto-> W |
| 23 | fofn | |- ( S : dom S -onto-> W -> S Fn dom S ) |
|
| 24 | 22 23 | ax-mp | |- S Fn dom S |
| 25 | fniniseg | |- ( S Fn dom S -> ( r e. ( `' S " { g } ) <-> ( r e. dom S /\ ( S ` r ) = g ) ) ) |
|
| 26 | 24 25 | ax-mp | |- ( r e. ( `' S " { g } ) <-> ( r e. dom S /\ ( S ` r ) = g ) ) |
| 27 | fniniseg | |- ( S Fn dom S -> ( b e. ( `' S " { g } ) <-> ( b e. dom S /\ ( S ` b ) = g ) ) ) |
|
| 28 | 24 27 | ax-mp | |- ( b e. ( `' S " { g } ) <-> ( b e. dom S /\ ( S ` b ) = g ) ) |
| 29 | eqtr3 | |- ( ( ( S ` r ) = g /\ ( S ` b ) = g ) -> ( S ` r ) = ( S ` b ) ) |
|
| 30 | 1 2 3 4 5 6 | efgred | |- ( ( r e. dom S /\ b e. dom S /\ ( S ` r ) = ( S ` b ) ) -> ( r ` 0 ) = ( b ` 0 ) ) |
| 31 | 30 | eqcomd | |- ( ( r e. dom S /\ b e. dom S /\ ( S ` r ) = ( S ` b ) ) -> ( b ` 0 ) = ( r ` 0 ) ) |
| 32 | 31 | 3expa | |- ( ( ( r e. dom S /\ b e. dom S ) /\ ( S ` r ) = ( S ` b ) ) -> ( b ` 0 ) = ( r ` 0 ) ) |
| 33 | 29 32 | sylan2 | |- ( ( ( r e. dom S /\ b e. dom S ) /\ ( ( S ` r ) = g /\ ( S ` b ) = g ) ) -> ( b ` 0 ) = ( r ` 0 ) ) |
| 34 | 33 | an4s | |- ( ( ( r e. dom S /\ ( S ` r ) = g ) /\ ( b e. dom S /\ ( S ` b ) = g ) ) -> ( b ` 0 ) = ( r ` 0 ) ) |
| 35 | 26 28 34 | syl2anb | |- ( ( r e. ( `' S " { g } ) /\ b e. ( `' S " { g } ) ) -> ( b ` 0 ) = ( r ` 0 ) ) |
| 36 | eqeq2 | |- ( ( r ` 0 ) = ( s ` 0 ) -> ( ( b ` 0 ) = ( r ` 0 ) <-> ( b ` 0 ) = ( s ` 0 ) ) ) |
|
| 37 | 35 36 | syl5ibcom | |- ( ( r e. ( `' S " { g } ) /\ b e. ( `' S " { g } ) ) -> ( ( r ` 0 ) = ( s ` 0 ) -> ( b ` 0 ) = ( s ` 0 ) ) ) |
| 38 | 37 | reximdv | |- ( ( r e. ( `' S " { g } ) /\ b e. ( `' S " { g } ) ) -> ( E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) -> E. s e. ( `' S " { h } ) ( b ` 0 ) = ( s ` 0 ) ) ) |
| 39 | eqeq1 | |- ( ( a ` 0 ) = ( b ` 0 ) -> ( ( a ` 0 ) = ( s ` 0 ) <-> ( b ` 0 ) = ( s ` 0 ) ) ) |
|
| 40 | 39 | rexbidv | |- ( ( a ` 0 ) = ( b ` 0 ) -> ( E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) <-> E. s e. ( `' S " { h } ) ( b ` 0 ) = ( s ` 0 ) ) ) |
| 41 | 40 | imbi2d | |- ( ( a ` 0 ) = ( b ` 0 ) -> ( ( E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) -> E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) <-> ( E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) -> E. s e. ( `' S " { h } ) ( b ` 0 ) = ( s ` 0 ) ) ) ) |
| 42 | 38 41 | syl5ibrcom | |- ( ( r e. ( `' S " { g } ) /\ b e. ( `' S " { g } ) ) -> ( ( a ` 0 ) = ( b ` 0 ) -> ( E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) -> E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) ) ) |
| 43 | 42 | rexlimdva | |- ( r e. ( `' S " { g } ) -> ( E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) -> ( E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) -> E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) ) ) |
| 44 | 43 | impd | |- ( r e. ( `' S " { g } ) -> ( ( E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) /\ E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) ) -> E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) ) |
| 45 | 44 | rexlimiv | |- ( E. r e. ( `' S " { g } ) ( E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) /\ E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) ) -> E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) |
| 46 | 45 | reximi | |- ( E. a e. ( `' S " { f } ) E. r e. ( `' S " { g } ) ( E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) /\ E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) ) -> E. a e. ( `' S " { f } ) E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) |
| 47 | 21 46 | sylbir | |- ( ( E. a e. ( `' S " { f } ) E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) /\ E. r e. ( `' S " { g } ) E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) ) -> E. a e. ( `' S " { f } ) E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) |
| 48 | 16 20 47 | syl2anb | |- ( ( f L g /\ g L h ) -> E. a e. ( `' S " { f } ) E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) |
| 49 | 1 2 3 4 5 6 7 | efgrelexlema | |- ( f L h <-> E. a e. ( `' S " { f } ) E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) |
| 50 | 48 49 | sylibr | |- ( ( f L g /\ g L h ) -> f L h ) |
| 51 | 50 | adantl | |- ( ( T. /\ ( f L g /\ g L h ) ) -> f L h ) |
| 52 | eqid | |- ( a ` 0 ) = ( a ` 0 ) |
|
| 53 | fveq1 | |- ( b = a -> ( b ` 0 ) = ( a ` 0 ) ) |
|
| 54 | 53 | rspceeqv | |- ( ( a e. ( `' S " { f } ) /\ ( a ` 0 ) = ( a ` 0 ) ) -> E. b e. ( `' S " { f } ) ( a ` 0 ) = ( b ` 0 ) ) |
| 55 | 52 54 | mpan2 | |- ( a e. ( `' S " { f } ) -> E. b e. ( `' S " { f } ) ( a ` 0 ) = ( b ` 0 ) ) |
| 56 | 55 | pm4.71i | |- ( a e. ( `' S " { f } ) <-> ( a e. ( `' S " { f } ) /\ E. b e. ( `' S " { f } ) ( a ` 0 ) = ( b ` 0 ) ) ) |
| 57 | fniniseg | |- ( S Fn dom S -> ( a e. ( `' S " { f } ) <-> ( a e. dom S /\ ( S ` a ) = f ) ) ) |
|
| 58 | 24 57 | ax-mp | |- ( a e. ( `' S " { f } ) <-> ( a e. dom S /\ ( S ` a ) = f ) ) |
| 59 | 56 58 | bitr3i | |- ( ( a e. ( `' S " { f } ) /\ E. b e. ( `' S " { f } ) ( a ` 0 ) = ( b ` 0 ) ) <-> ( a e. dom S /\ ( S ` a ) = f ) ) |
| 60 | 59 | rexbii2 | |- ( E. a e. ( `' S " { f } ) E. b e. ( `' S " { f } ) ( a ` 0 ) = ( b ` 0 ) <-> E. a e. dom S ( S ` a ) = f ) |
| 61 | 1 2 3 4 5 6 7 | efgrelexlema | |- ( f L f <-> E. a e. ( `' S " { f } ) E. b e. ( `' S " { f } ) ( a ` 0 ) = ( b ` 0 ) ) |
| 62 | forn | |- ( S : dom S -onto-> W -> ran S = W ) |
|
| 63 | 22 62 | ax-mp | |- ran S = W |
| 64 | 63 | eleq2i | |- ( f e. ran S <-> f e. W ) |
| 65 | fvelrnb | |- ( S Fn dom S -> ( f e. ran S <-> E. a e. dom S ( S ` a ) = f ) ) |
|
| 66 | 24 65 | ax-mp | |- ( f e. ran S <-> E. a e. dom S ( S ` a ) = f ) |
| 67 | 64 66 | bitr3i | |- ( f e. W <-> E. a e. dom S ( S ` a ) = f ) |
| 68 | 60 61 67 | 3bitr4ri | |- ( f e. W <-> f L f ) |
| 69 | 68 | a1i | |- ( T. -> ( f e. W <-> f L f ) ) |
| 70 | 10 19 51 69 | iserd | |- ( T. -> L Er W ) |
| 71 | 70 | mptru | |- L Er W |
| 72 | simpl | |- ( ( a e. W /\ b e. ran ( T ` a ) ) -> a e. W ) |
|
| 73 | foelrn | |- ( ( S : dom S -onto-> W /\ a e. W ) -> E. r e. dom S a = ( S ` r ) ) |
|
| 74 | 22 72 73 | sylancr | |- ( ( a e. W /\ b e. ran ( T ` a ) ) -> E. r e. dom S a = ( S ` r ) ) |
| 75 | simprl | |- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> r e. dom S ) |
|
| 76 | simprr | |- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> a = ( S ` r ) ) |
|
| 77 | 76 | eqcomd | |- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( S ` r ) = a ) |
| 78 | fniniseg | |- ( S Fn dom S -> ( r e. ( `' S " { a } ) <-> ( r e. dom S /\ ( S ` r ) = a ) ) ) |
|
| 79 | 24 78 | ax-mp | |- ( r e. ( `' S " { a } ) <-> ( r e. dom S /\ ( S ` r ) = a ) ) |
| 80 | 75 77 79 | sylanbrc | |- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> r e. ( `' S " { a } ) ) |
| 81 | simplr | |- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> b e. ran ( T ` a ) ) |
|
| 82 | 76 | fveq2d | |- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( T ` a ) = ( T ` ( S ` r ) ) ) |
| 83 | 82 | rneqd | |- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ran ( T ` a ) = ran ( T ` ( S ` r ) ) ) |
| 84 | 81 83 | eleqtrd | |- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> b e. ran ( T ` ( S ` r ) ) ) |
| 85 | 1 2 3 4 5 6 | efgsp1 | |- ( ( r e. dom S /\ b e. ran ( T ` ( S ` r ) ) ) -> ( r ++ <" b "> ) e. dom S ) |
| 86 | 75 84 85 | syl2anc | |- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( r ++ <" b "> ) e. dom S ) |
| 87 | 1 2 3 4 5 6 | efgsdm | |- ( r e. dom S <-> ( r e. ( Word W \ { (/) } ) /\ ( r ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` r ) ) ( r ` i ) e. ran ( T ` ( r ` ( i - 1 ) ) ) ) ) |
| 88 | 87 | simp1bi | |- ( r e. dom S -> r e. ( Word W \ { (/) } ) ) |
| 89 | 88 | ad2antrl | |- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> r e. ( Word W \ { (/) } ) ) |
| 90 | 89 | eldifad | |- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> r e. Word W ) |
| 91 | 1 2 3 4 | efgtf | |- ( a e. W -> ( ( T ` a ) = ( f e. ( 0 ... ( # ` a ) ) , g e. ( I X. 2o ) |-> ( a splice <. f , f , <" g ( M ` g ) "> >. ) ) /\ ( T ` a ) : ( ( 0 ... ( # ` a ) ) X. ( I X. 2o ) ) --> W ) ) |
| 92 | 91 | simprd | |- ( a e. W -> ( T ` a ) : ( ( 0 ... ( # ` a ) ) X. ( I X. 2o ) ) --> W ) |
| 93 | 92 | frnd | |- ( a e. W -> ran ( T ` a ) C_ W ) |
| 94 | 93 | sselda | |- ( ( a e. W /\ b e. ran ( T ` a ) ) -> b e. W ) |
| 95 | 94 | adantr | |- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> b e. W ) |
| 96 | 1 2 3 4 5 6 | efgsval2 | |- ( ( r e. Word W /\ b e. W /\ ( r ++ <" b "> ) e. dom S ) -> ( S ` ( r ++ <" b "> ) ) = b ) |
| 97 | 90 95 86 96 | syl3anc | |- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( S ` ( r ++ <" b "> ) ) = b ) |
| 98 | fniniseg | |- ( S Fn dom S -> ( ( r ++ <" b "> ) e. ( `' S " { b } ) <-> ( ( r ++ <" b "> ) e. dom S /\ ( S ` ( r ++ <" b "> ) ) = b ) ) ) |
|
| 99 | 24 98 | ax-mp | |- ( ( r ++ <" b "> ) e. ( `' S " { b } ) <-> ( ( r ++ <" b "> ) e. dom S /\ ( S ` ( r ++ <" b "> ) ) = b ) ) |
| 100 | 86 97 99 | sylanbrc | |- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( r ++ <" b "> ) e. ( `' S " { b } ) ) |
| 101 | 95 | s1cld | |- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> <" b "> e. Word W ) |
| 102 | eldifsn | |- ( r e. ( Word W \ { (/) } ) <-> ( r e. Word W /\ r =/= (/) ) ) |
|
| 103 | lennncl | |- ( ( r e. Word W /\ r =/= (/) ) -> ( # ` r ) e. NN ) |
|
| 104 | 102 103 | sylbi | |- ( r e. ( Word W \ { (/) } ) -> ( # ` r ) e. NN ) |
| 105 | 89 104 | syl | |- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( # ` r ) e. NN ) |
| 106 | lbfzo0 | |- ( 0 e. ( 0 ..^ ( # ` r ) ) <-> ( # ` r ) e. NN ) |
|
| 107 | 105 106 | sylibr | |- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> 0 e. ( 0 ..^ ( # ` r ) ) ) |
| 108 | ccatval1 | |- ( ( r e. Word W /\ <" b "> e. Word W /\ 0 e. ( 0 ..^ ( # ` r ) ) ) -> ( ( r ++ <" b "> ) ` 0 ) = ( r ` 0 ) ) |
|
| 109 | 90 101 107 108 | syl3anc | |- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( ( r ++ <" b "> ) ` 0 ) = ( r ` 0 ) ) |
| 110 | 109 | eqcomd | |- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( r ` 0 ) = ( ( r ++ <" b "> ) ` 0 ) ) |
| 111 | fveq1 | |- ( s = ( r ++ <" b "> ) -> ( s ` 0 ) = ( ( r ++ <" b "> ) ` 0 ) ) |
|
| 112 | 111 | rspceeqv | |- ( ( ( r ++ <" b "> ) e. ( `' S " { b } ) /\ ( r ` 0 ) = ( ( r ++ <" b "> ) ` 0 ) ) -> E. s e. ( `' S " { b } ) ( r ` 0 ) = ( s ` 0 ) ) |
| 113 | 100 110 112 | syl2anc | |- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> E. s e. ( `' S " { b } ) ( r ` 0 ) = ( s ` 0 ) ) |
| 114 | 74 80 113 | reximssdv | |- ( ( a e. W /\ b e. ran ( T ` a ) ) -> E. r e. ( `' S " { a } ) E. s e. ( `' S " { b } ) ( r ` 0 ) = ( s ` 0 ) ) |
| 115 | 1 2 3 4 5 6 7 | efgrelexlema | |- ( a L b <-> E. r e. ( `' S " { a } ) E. s e. ( `' S " { b } ) ( r ` 0 ) = ( s ` 0 ) ) |
| 116 | 114 115 | sylibr | |- ( ( a e. W /\ b e. ran ( T ` a ) ) -> a L b ) |
| 117 | vex | |- b e. _V |
|
| 118 | vex | |- a e. _V |
|
| 119 | 117 118 | elec | |- ( b e. [ a ] L <-> a L b ) |
| 120 | 116 119 | sylibr | |- ( ( a e. W /\ b e. ran ( T ` a ) ) -> b e. [ a ] L ) |
| 121 | 120 | ex | |- ( a e. W -> ( b e. ran ( T ` a ) -> b e. [ a ] L ) ) |
| 122 | 121 | ssrdv | |- ( a e. W -> ran ( T ` a ) C_ [ a ] L ) |
| 123 | 122 | rgen | |- A. a e. W ran ( T ` a ) C_ [ a ] L |
| 124 | 1 | fvexi | |- W e. _V |
| 125 | erex | |- ( L Er W -> ( W e. _V -> L e. _V ) ) |
|
| 126 | 71 124 125 | mp2 | |- L e. _V |
| 127 | ereq1 | |- ( r = L -> ( r Er W <-> L Er W ) ) |
|
| 128 | eceq2 | |- ( r = L -> [ a ] r = [ a ] L ) |
|
| 129 | 128 | sseq2d | |- ( r = L -> ( ran ( T ` a ) C_ [ a ] r <-> ran ( T ` a ) C_ [ a ] L ) ) |
| 130 | 129 | ralbidv | |- ( r = L -> ( A. a e. W ran ( T ` a ) C_ [ a ] r <-> A. a e. W ran ( T ` a ) C_ [ a ] L ) ) |
| 131 | 127 130 | anbi12d | |- ( r = L -> ( ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) <-> ( L Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] L ) ) ) |
| 132 | 126 131 | elab | |- ( L e. { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } <-> ( L Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] L ) ) |
| 133 | 71 123 132 | mpbir2an | |- L e. { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } |
| 134 | intss1 | |- ( L e. { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } -> |^| { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } C_ L ) |
|
| 135 | 133 134 | ax-mp | |- |^| { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } C_ L |
| 136 | 8 135 | eqsstri | |- .~ C_ L |