This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function on the reals determines an isomorphism from reals onto positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007) (Revised by Mario Carneiro, 11-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reefiso | ⊢ ( exp ↾ ℝ ) Isom < , < ( ℝ , ℝ+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reeff1o | ⊢ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ | |
| 2 | eflt | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 ↔ ( exp ‘ 𝑥 ) < ( exp ‘ 𝑦 ) ) ) | |
| 3 | fvres | ⊢ ( 𝑥 ∈ ℝ → ( ( exp ↾ ℝ ) ‘ 𝑥 ) = ( exp ‘ 𝑥 ) ) | |
| 4 | fvres | ⊢ ( 𝑦 ∈ ℝ → ( ( exp ↾ ℝ ) ‘ 𝑦 ) = ( exp ‘ 𝑦 ) ) | |
| 5 | 3 4 | breqan12d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( exp ↾ ℝ ) ‘ 𝑥 ) < ( ( exp ↾ ℝ ) ‘ 𝑦 ) ↔ ( exp ‘ 𝑥 ) < ( exp ‘ 𝑦 ) ) ) |
| 6 | 2 5 | bitr4d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 ↔ ( ( exp ↾ ℝ ) ‘ 𝑥 ) < ( ( exp ↾ ℝ ) ‘ 𝑦 ) ) ) |
| 7 | 6 | rgen2 | ⊢ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 ↔ ( ( exp ↾ ℝ ) ‘ 𝑥 ) < ( ( exp ↾ ℝ ) ‘ 𝑦 ) ) |
| 8 | df-isom | ⊢ ( ( exp ↾ ℝ ) Isom < , < ( ℝ , ℝ+ ) ↔ ( ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ∧ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 ↔ ( ( exp ↾ ℝ ) ‘ 𝑥 ) < ( ( exp ↾ ℝ ) ‘ 𝑦 ) ) ) ) | |
| 9 | 1 7 8 | mpbir2an | ⊢ ( exp ↾ ℝ ) Isom < , < ( ℝ , ℝ+ ) |