This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007) (Revised by Mario Carneiro, 10-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reeff1o | ⊢ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reeff1 | ⊢ ( exp ↾ ℝ ) : ℝ –1-1→ ℝ+ | |
| 2 | f1f | ⊢ ( ( exp ↾ ℝ ) : ℝ –1-1→ ℝ+ → ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ ) | |
| 3 | ffn | ⊢ ( ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ → ( exp ↾ ℝ ) Fn ℝ ) | |
| 4 | 1 2 3 | mp2b | ⊢ ( exp ↾ ℝ ) Fn ℝ |
| 5 | frn | ⊢ ( ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ → ran ( exp ↾ ℝ ) ⊆ ℝ+ ) | |
| 6 | 1 2 5 | mp2b | ⊢ ran ( exp ↾ ℝ ) ⊆ ℝ+ |
| 7 | elrp | ⊢ ( 𝑧 ∈ ℝ+ ↔ ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ) ) | |
| 8 | reclt1 | ⊢ ( ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ) → ( 𝑧 < 1 ↔ 1 < ( 1 / 𝑧 ) ) ) | |
| 9 | 7 8 | sylbi | ⊢ ( 𝑧 ∈ ℝ+ → ( 𝑧 < 1 ↔ 1 < ( 1 / 𝑧 ) ) ) |
| 10 | rpre | ⊢ ( 𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ ) | |
| 11 | rpne0 | ⊢ ( 𝑧 ∈ ℝ+ → 𝑧 ≠ 0 ) | |
| 12 | 10 11 | rereccld | ⊢ ( 𝑧 ∈ ℝ+ → ( 1 / 𝑧 ) ∈ ℝ ) |
| 13 | reeff1olem | ⊢ ( ( ( 1 / 𝑧 ) ∈ ℝ ∧ 1 < ( 1 / 𝑧 ) ) → ∃ 𝑦 ∈ ℝ ( exp ‘ 𝑦 ) = ( 1 / 𝑧 ) ) | |
| 14 | 12 13 | sylan | ⊢ ( ( 𝑧 ∈ ℝ+ ∧ 1 < ( 1 / 𝑧 ) ) → ∃ 𝑦 ∈ ℝ ( exp ‘ 𝑦 ) = ( 1 / 𝑧 ) ) |
| 15 | eqcom | ⊢ ( ( 1 / 𝑧 ) = ( exp ‘ 𝑦 ) ↔ ( exp ‘ 𝑦 ) = ( 1 / 𝑧 ) ) | |
| 16 | rpcnne0 | ⊢ ( 𝑧 ∈ ℝ+ → ( 𝑧 ∈ ℂ ∧ 𝑧 ≠ 0 ) ) | |
| 17 | recn | ⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) | |
| 18 | efcl | ⊢ ( 𝑦 ∈ ℂ → ( exp ‘ 𝑦 ) ∈ ℂ ) | |
| 19 | 17 18 | syl | ⊢ ( 𝑦 ∈ ℝ → ( exp ‘ 𝑦 ) ∈ ℂ ) |
| 20 | efne0 | ⊢ ( 𝑦 ∈ ℂ → ( exp ‘ 𝑦 ) ≠ 0 ) | |
| 21 | 17 20 | syl | ⊢ ( 𝑦 ∈ ℝ → ( exp ‘ 𝑦 ) ≠ 0 ) |
| 22 | 19 21 | jca | ⊢ ( 𝑦 ∈ ℝ → ( ( exp ‘ 𝑦 ) ∈ ℂ ∧ ( exp ‘ 𝑦 ) ≠ 0 ) ) |
| 23 | rec11r | ⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝑧 ≠ 0 ) ∧ ( ( exp ‘ 𝑦 ) ∈ ℂ ∧ ( exp ‘ 𝑦 ) ≠ 0 ) ) → ( ( 1 / 𝑧 ) = ( exp ‘ 𝑦 ) ↔ ( 1 / ( exp ‘ 𝑦 ) ) = 𝑧 ) ) | |
| 24 | 16 22 23 | syl2an | ⊢ ( ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ) → ( ( 1 / 𝑧 ) = ( exp ‘ 𝑦 ) ↔ ( 1 / ( exp ‘ 𝑦 ) ) = 𝑧 ) ) |
| 25 | efcan | ⊢ ( 𝑦 ∈ ℂ → ( ( exp ‘ 𝑦 ) · ( exp ‘ - 𝑦 ) ) = 1 ) | |
| 26 | 25 | eqcomd | ⊢ ( 𝑦 ∈ ℂ → 1 = ( ( exp ‘ 𝑦 ) · ( exp ‘ - 𝑦 ) ) ) |
| 27 | negcl | ⊢ ( 𝑦 ∈ ℂ → - 𝑦 ∈ ℂ ) | |
| 28 | efcl | ⊢ ( - 𝑦 ∈ ℂ → ( exp ‘ - 𝑦 ) ∈ ℂ ) | |
| 29 | 27 28 | syl | ⊢ ( 𝑦 ∈ ℂ → ( exp ‘ - 𝑦 ) ∈ ℂ ) |
| 30 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 31 | divmul2 | ⊢ ( ( 1 ∈ ℂ ∧ ( exp ‘ - 𝑦 ) ∈ ℂ ∧ ( ( exp ‘ 𝑦 ) ∈ ℂ ∧ ( exp ‘ 𝑦 ) ≠ 0 ) ) → ( ( 1 / ( exp ‘ 𝑦 ) ) = ( exp ‘ - 𝑦 ) ↔ 1 = ( ( exp ‘ 𝑦 ) · ( exp ‘ - 𝑦 ) ) ) ) | |
| 32 | 30 31 | mp3an1 | ⊢ ( ( ( exp ‘ - 𝑦 ) ∈ ℂ ∧ ( ( exp ‘ 𝑦 ) ∈ ℂ ∧ ( exp ‘ 𝑦 ) ≠ 0 ) ) → ( ( 1 / ( exp ‘ 𝑦 ) ) = ( exp ‘ - 𝑦 ) ↔ 1 = ( ( exp ‘ 𝑦 ) · ( exp ‘ - 𝑦 ) ) ) ) |
| 33 | 29 18 20 32 | syl12anc | ⊢ ( 𝑦 ∈ ℂ → ( ( 1 / ( exp ‘ 𝑦 ) ) = ( exp ‘ - 𝑦 ) ↔ 1 = ( ( exp ‘ 𝑦 ) · ( exp ‘ - 𝑦 ) ) ) ) |
| 34 | 26 33 | mpbird | ⊢ ( 𝑦 ∈ ℂ → ( 1 / ( exp ‘ 𝑦 ) ) = ( exp ‘ - 𝑦 ) ) |
| 35 | 17 34 | syl | ⊢ ( 𝑦 ∈ ℝ → ( 1 / ( exp ‘ 𝑦 ) ) = ( exp ‘ - 𝑦 ) ) |
| 36 | 35 | eqeq1d | ⊢ ( 𝑦 ∈ ℝ → ( ( 1 / ( exp ‘ 𝑦 ) ) = 𝑧 ↔ ( exp ‘ - 𝑦 ) = 𝑧 ) ) |
| 37 | 36 | adantl | ⊢ ( ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ) → ( ( 1 / ( exp ‘ 𝑦 ) ) = 𝑧 ↔ ( exp ‘ - 𝑦 ) = 𝑧 ) ) |
| 38 | 24 37 | bitrd | ⊢ ( ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ) → ( ( 1 / 𝑧 ) = ( exp ‘ 𝑦 ) ↔ ( exp ‘ - 𝑦 ) = 𝑧 ) ) |
| 39 | 15 38 | bitr3id | ⊢ ( ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ) → ( ( exp ‘ 𝑦 ) = ( 1 / 𝑧 ) ↔ ( exp ‘ - 𝑦 ) = 𝑧 ) ) |
| 40 | 39 | biimpd | ⊢ ( ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ) → ( ( exp ‘ 𝑦 ) = ( 1 / 𝑧 ) → ( exp ‘ - 𝑦 ) = 𝑧 ) ) |
| 41 | 40 | reximdva | ⊢ ( 𝑧 ∈ ℝ+ → ( ∃ 𝑦 ∈ ℝ ( exp ‘ 𝑦 ) = ( 1 / 𝑧 ) → ∃ 𝑦 ∈ ℝ ( exp ‘ - 𝑦 ) = 𝑧 ) ) |
| 42 | 41 | adantr | ⊢ ( ( 𝑧 ∈ ℝ+ ∧ 1 < ( 1 / 𝑧 ) ) → ( ∃ 𝑦 ∈ ℝ ( exp ‘ 𝑦 ) = ( 1 / 𝑧 ) → ∃ 𝑦 ∈ ℝ ( exp ‘ - 𝑦 ) = 𝑧 ) ) |
| 43 | 14 42 | mpd | ⊢ ( ( 𝑧 ∈ ℝ+ ∧ 1 < ( 1 / 𝑧 ) ) → ∃ 𝑦 ∈ ℝ ( exp ‘ - 𝑦 ) = 𝑧 ) |
| 44 | renegcl | ⊢ ( 𝑦 ∈ ℝ → - 𝑦 ∈ ℝ ) | |
| 45 | infm3lem | ⊢ ( 𝑥 ∈ ℝ → ∃ 𝑦 ∈ ℝ 𝑥 = - 𝑦 ) | |
| 46 | fveqeq2 | ⊢ ( 𝑥 = - 𝑦 → ( ( exp ‘ 𝑥 ) = 𝑧 ↔ ( exp ‘ - 𝑦 ) = 𝑧 ) ) | |
| 47 | 44 45 46 | rexxfr | ⊢ ( ∃ 𝑥 ∈ ℝ ( exp ‘ 𝑥 ) = 𝑧 ↔ ∃ 𝑦 ∈ ℝ ( exp ‘ - 𝑦 ) = 𝑧 ) |
| 48 | 43 47 | sylibr | ⊢ ( ( 𝑧 ∈ ℝ+ ∧ 1 < ( 1 / 𝑧 ) ) → ∃ 𝑥 ∈ ℝ ( exp ‘ 𝑥 ) = 𝑧 ) |
| 49 | 48 | ex | ⊢ ( 𝑧 ∈ ℝ+ → ( 1 < ( 1 / 𝑧 ) → ∃ 𝑥 ∈ ℝ ( exp ‘ 𝑥 ) = 𝑧 ) ) |
| 50 | 9 49 | sylbid | ⊢ ( 𝑧 ∈ ℝ+ → ( 𝑧 < 1 → ∃ 𝑥 ∈ ℝ ( exp ‘ 𝑥 ) = 𝑧 ) ) |
| 51 | 50 | imp | ⊢ ( ( 𝑧 ∈ ℝ+ ∧ 𝑧 < 1 ) → ∃ 𝑥 ∈ ℝ ( exp ‘ 𝑥 ) = 𝑧 ) |
| 52 | ef0 | ⊢ ( exp ‘ 0 ) = 1 | |
| 53 | 52 | eqeq2i | ⊢ ( 𝑧 = ( exp ‘ 0 ) ↔ 𝑧 = 1 ) |
| 54 | 0re | ⊢ 0 ∈ ℝ | |
| 55 | fveqeq2 | ⊢ ( 𝑥 = 0 → ( ( exp ‘ 𝑥 ) = 𝑧 ↔ ( exp ‘ 0 ) = 𝑧 ) ) | |
| 56 | 55 | rspcev | ⊢ ( ( 0 ∈ ℝ ∧ ( exp ‘ 0 ) = 𝑧 ) → ∃ 𝑥 ∈ ℝ ( exp ‘ 𝑥 ) = 𝑧 ) |
| 57 | 54 56 | mpan | ⊢ ( ( exp ‘ 0 ) = 𝑧 → ∃ 𝑥 ∈ ℝ ( exp ‘ 𝑥 ) = 𝑧 ) |
| 58 | 57 | eqcoms | ⊢ ( 𝑧 = ( exp ‘ 0 ) → ∃ 𝑥 ∈ ℝ ( exp ‘ 𝑥 ) = 𝑧 ) |
| 59 | 53 58 | sylbir | ⊢ ( 𝑧 = 1 → ∃ 𝑥 ∈ ℝ ( exp ‘ 𝑥 ) = 𝑧 ) |
| 60 | 59 | adantl | ⊢ ( ( 𝑧 ∈ ℝ+ ∧ 𝑧 = 1 ) → ∃ 𝑥 ∈ ℝ ( exp ‘ 𝑥 ) = 𝑧 ) |
| 61 | reeff1olem | ⊢ ( ( 𝑧 ∈ ℝ ∧ 1 < 𝑧 ) → ∃ 𝑥 ∈ ℝ ( exp ‘ 𝑥 ) = 𝑧 ) | |
| 62 | 10 61 | sylan | ⊢ ( ( 𝑧 ∈ ℝ+ ∧ 1 < 𝑧 ) → ∃ 𝑥 ∈ ℝ ( exp ‘ 𝑥 ) = 𝑧 ) |
| 63 | 1re | ⊢ 1 ∈ ℝ | |
| 64 | lttri4 | ⊢ ( ( 𝑧 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝑧 < 1 ∨ 𝑧 = 1 ∨ 1 < 𝑧 ) ) | |
| 65 | 10 63 64 | sylancl | ⊢ ( 𝑧 ∈ ℝ+ → ( 𝑧 < 1 ∨ 𝑧 = 1 ∨ 1 < 𝑧 ) ) |
| 66 | 51 60 62 65 | mpjao3dan | ⊢ ( 𝑧 ∈ ℝ+ → ∃ 𝑥 ∈ ℝ ( exp ‘ 𝑥 ) = 𝑧 ) |
| 67 | fvres | ⊢ ( 𝑥 ∈ ℝ → ( ( exp ↾ ℝ ) ‘ 𝑥 ) = ( exp ‘ 𝑥 ) ) | |
| 68 | 67 | eqeq1d | ⊢ ( 𝑥 ∈ ℝ → ( ( ( exp ↾ ℝ ) ‘ 𝑥 ) = 𝑧 ↔ ( exp ‘ 𝑥 ) = 𝑧 ) ) |
| 69 | 68 | rexbiia | ⊢ ( ∃ 𝑥 ∈ ℝ ( ( exp ↾ ℝ ) ‘ 𝑥 ) = 𝑧 ↔ ∃ 𝑥 ∈ ℝ ( exp ‘ 𝑥 ) = 𝑧 ) |
| 70 | 66 69 | sylibr | ⊢ ( 𝑧 ∈ ℝ+ → ∃ 𝑥 ∈ ℝ ( ( exp ↾ ℝ ) ‘ 𝑥 ) = 𝑧 ) |
| 71 | fvelrnb | ⊢ ( ( exp ↾ ℝ ) Fn ℝ → ( 𝑧 ∈ ran ( exp ↾ ℝ ) ↔ ∃ 𝑥 ∈ ℝ ( ( exp ↾ ℝ ) ‘ 𝑥 ) = 𝑧 ) ) | |
| 72 | 4 71 | ax-mp | ⊢ ( 𝑧 ∈ ran ( exp ↾ ℝ ) ↔ ∃ 𝑥 ∈ ℝ ( ( exp ↾ ℝ ) ‘ 𝑥 ) = 𝑧 ) |
| 73 | 70 72 | sylibr | ⊢ ( 𝑧 ∈ ℝ+ → 𝑧 ∈ ran ( exp ↾ ℝ ) ) |
| 74 | 73 | ssriv | ⊢ ℝ+ ⊆ ran ( exp ↾ ℝ ) |
| 75 | 6 74 | eqssi | ⊢ ran ( exp ↾ ℝ ) = ℝ+ |
| 76 | df-fo | ⊢ ( ( exp ↾ ℝ ) : ℝ –onto→ ℝ+ ↔ ( ( exp ↾ ℝ ) Fn ℝ ∧ ran ( exp ↾ ℝ ) = ℝ+ ) ) | |
| 77 | 4 75 76 | mpbir2an | ⊢ ( exp ↾ ℝ ) : ℝ –onto→ ℝ+ |
| 78 | df-f1o | ⊢ ( ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ↔ ( ( exp ↾ ℝ ) : ℝ –1-1→ ℝ+ ∧ ( exp ↾ ℝ ) : ℝ –onto→ ℝ+ ) ) | |
| 79 | 1 77 78 | mpbir2an | ⊢ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ |