This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015) (Revised by Thierry Arnoux, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | reefgim.1 | ⊢ 𝑃 = ( ( mulGrp ‘ ℂfld ) ↾s ℝ+ ) | |
| Assertion | reefgim | ⊢ ( exp ↾ ℝ ) ∈ ( ℝfld GrpIso 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reefgim.1 | ⊢ 𝑃 = ( ( mulGrp ‘ ℂfld ) ↾s ℝ+ ) | |
| 2 | rebase | ⊢ ℝ = ( Base ‘ ℝfld ) | |
| 3 | eqid | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) | |
| 4 | 3 | rpmsubg | ⊢ ℝ+ ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) |
| 5 | cnex | ⊢ ℂ ∈ V | |
| 6 | 5 | difexi | ⊢ ( ℂ ∖ { 0 } ) ∈ V |
| 7 | rpcndif0 | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ( ℂ ∖ { 0 } ) ) | |
| 8 | 7 | ssriv | ⊢ ℝ+ ⊆ ( ℂ ∖ { 0 } ) |
| 9 | ressabs | ⊢ ( ( ( ℂ ∖ { 0 } ) ∈ V ∧ ℝ+ ⊆ ( ℂ ∖ { 0 } ) ) → ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s ℝ+ ) = ( ( mulGrp ‘ ℂfld ) ↾s ℝ+ ) ) | |
| 10 | 6 8 9 | mp2an | ⊢ ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s ℝ+ ) = ( ( mulGrp ‘ ℂfld ) ↾s ℝ+ ) |
| 11 | 1 10 | eqtr4i | ⊢ 𝑃 = ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s ℝ+ ) |
| 12 | 11 | subgbas | ⊢ ( ℝ+ ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) → ℝ+ = ( Base ‘ 𝑃 ) ) |
| 13 | 4 12 | ax-mp | ⊢ ℝ+ = ( Base ‘ 𝑃 ) |
| 14 | replusg | ⊢ + = ( +g ‘ ℝfld ) | |
| 15 | eqid | ⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) | |
| 16 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 17 | 15 16 | mgpplusg | ⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
| 18 | 1 17 | ressplusg | ⊢ ( ℝ+ ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) → · = ( +g ‘ 𝑃 ) ) |
| 19 | 4 18 | ax-mp | ⊢ · = ( +g ‘ 𝑃 ) |
| 20 | resubdrg | ⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) | |
| 21 | 20 | simpli | ⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
| 22 | df-refld | ⊢ ℝfld = ( ℂfld ↾s ℝ ) | |
| 23 | 22 | subrgring | ⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) → ℝfld ∈ Ring ) |
| 24 | 21 23 | ax-mp | ⊢ ℝfld ∈ Ring |
| 25 | ringgrp | ⊢ ( ℝfld ∈ Ring → ℝfld ∈ Grp ) | |
| 26 | 24 25 | mp1i | ⊢ ( ⊤ → ℝfld ∈ Grp ) |
| 27 | 11 | subggrp | ⊢ ( ℝ+ ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) → 𝑃 ∈ Grp ) |
| 28 | 4 27 | mp1i | ⊢ ( ⊤ → 𝑃 ∈ Grp ) |
| 29 | reeff1o | ⊢ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ | |
| 30 | f1of | ⊢ ( ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ → ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ ) | |
| 31 | 29 30 | mp1i | ⊢ ( ⊤ → ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ ) |
| 32 | recn | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) | |
| 33 | recn | ⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) | |
| 34 | efadd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( exp ‘ ( 𝑥 + 𝑦 ) ) = ( ( exp ‘ 𝑥 ) · ( exp ‘ 𝑦 ) ) ) | |
| 35 | 32 33 34 | syl2an | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( exp ‘ ( 𝑥 + 𝑦 ) ) = ( ( exp ‘ 𝑥 ) · ( exp ‘ 𝑦 ) ) ) |
| 36 | readdcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) | |
| 37 | 36 | fvresd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( exp ↾ ℝ ) ‘ ( 𝑥 + 𝑦 ) ) = ( exp ‘ ( 𝑥 + 𝑦 ) ) ) |
| 38 | fvres | ⊢ ( 𝑥 ∈ ℝ → ( ( exp ↾ ℝ ) ‘ 𝑥 ) = ( exp ‘ 𝑥 ) ) | |
| 39 | fvres | ⊢ ( 𝑦 ∈ ℝ → ( ( exp ↾ ℝ ) ‘ 𝑦 ) = ( exp ‘ 𝑦 ) ) | |
| 40 | 38 39 | oveqan12d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( exp ↾ ℝ ) ‘ 𝑥 ) · ( ( exp ↾ ℝ ) ‘ 𝑦 ) ) = ( ( exp ‘ 𝑥 ) · ( exp ‘ 𝑦 ) ) ) |
| 41 | 35 37 40 | 3eqtr4d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( exp ↾ ℝ ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( exp ↾ ℝ ) ‘ 𝑥 ) · ( ( exp ↾ ℝ ) ‘ 𝑦 ) ) ) |
| 42 | 41 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( ( exp ↾ ℝ ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( exp ↾ ℝ ) ‘ 𝑥 ) · ( ( exp ↾ ℝ ) ‘ 𝑦 ) ) ) |
| 43 | 2 13 14 19 26 28 31 42 | isghmd | ⊢ ( ⊤ → ( exp ↾ ℝ ) ∈ ( ℝfld GrpHom 𝑃 ) ) |
| 44 | 43 | mptru | ⊢ ( exp ↾ ℝ ) ∈ ( ℝfld GrpHom 𝑃 ) |
| 45 | 2 13 | isgim | ⊢ ( ( exp ↾ ℝ ) ∈ ( ℝfld GrpIso 𝑃 ) ↔ ( ( exp ↾ ℝ ) ∈ ( ℝfld GrpHom 𝑃 ) ∧ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ) ) |
| 46 | 44 29 45 | mpbir2an | ⊢ ( exp ↾ ℝ ) ∈ ( ℝfld GrpIso 𝑃 ) |