This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvlog . (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | logcn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| Assertion | dvloglem | ⊢ ( log “ 𝐷 ) ∈ ( TopOpen ‘ ℂfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| 2 | logf1o | ⊢ log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log | |
| 3 | f1ofun | ⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → Fun log ) | |
| 4 | 2 3 | ax-mp | ⊢ Fun log |
| 5 | 1 | logdmss | ⊢ 𝐷 ⊆ ( ℂ ∖ { 0 } ) |
| 6 | f1odm | ⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → dom log = ( ℂ ∖ { 0 } ) ) | |
| 7 | 2 6 | ax-mp | ⊢ dom log = ( ℂ ∖ { 0 } ) |
| 8 | 5 7 | sseqtrri | ⊢ 𝐷 ⊆ dom log |
| 9 | funimass4 | ⊢ ( ( Fun log ∧ 𝐷 ⊆ dom log ) → ( ( log “ 𝐷 ) ⊆ ( ◡ ℑ “ ( - π (,) π ) ) ↔ ∀ 𝑥 ∈ 𝐷 ( log ‘ 𝑥 ) ∈ ( ◡ ℑ “ ( - π (,) π ) ) ) ) | |
| 10 | 4 8 9 | mp2an | ⊢ ( ( log “ 𝐷 ) ⊆ ( ◡ ℑ “ ( - π (,) π ) ) ↔ ∀ 𝑥 ∈ 𝐷 ( log ‘ 𝑥 ) ∈ ( ◡ ℑ “ ( - π (,) π ) ) ) |
| 11 | 1 | ellogdm | ⊢ ( 𝑥 ∈ 𝐷 ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ+ ) ) ) |
| 12 | 11 | simplbi | ⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ ) |
| 13 | 1 | logdmn0 | ⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ≠ 0 ) |
| 14 | 12 13 | logcld | ⊢ ( 𝑥 ∈ 𝐷 → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 15 | 14 | imcld | ⊢ ( 𝑥 ∈ 𝐷 → ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 16 | 12 13 | logimcld | ⊢ ( 𝑥 ∈ 𝐷 → ( - π < ( ℑ ‘ ( log ‘ 𝑥 ) ) ∧ ( ℑ ‘ ( log ‘ 𝑥 ) ) ≤ π ) ) |
| 17 | 16 | simpld | ⊢ ( 𝑥 ∈ 𝐷 → - π < ( ℑ ‘ ( log ‘ 𝑥 ) ) ) |
| 18 | pire | ⊢ π ∈ ℝ | |
| 19 | 18 | a1i | ⊢ ( 𝑥 ∈ 𝐷 → π ∈ ℝ ) |
| 20 | 16 | simprd | ⊢ ( 𝑥 ∈ 𝐷 → ( ℑ ‘ ( log ‘ 𝑥 ) ) ≤ π ) |
| 21 | 1 | logdmnrp | ⊢ ( 𝑥 ∈ 𝐷 → ¬ - 𝑥 ∈ ℝ+ ) |
| 22 | lognegb | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( - 𝑥 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝑥 ) ) = π ) ) | |
| 23 | 12 13 22 | syl2anc | ⊢ ( 𝑥 ∈ 𝐷 → ( - 𝑥 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝑥 ) ) = π ) ) |
| 24 | 23 | necon3bbid | ⊢ ( 𝑥 ∈ 𝐷 → ( ¬ - 𝑥 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝑥 ) ) ≠ π ) ) |
| 25 | 21 24 | mpbid | ⊢ ( 𝑥 ∈ 𝐷 → ( ℑ ‘ ( log ‘ 𝑥 ) ) ≠ π ) |
| 26 | 25 | necomd | ⊢ ( 𝑥 ∈ 𝐷 → π ≠ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) |
| 27 | 15 19 20 26 | leneltd | ⊢ ( 𝑥 ∈ 𝐷 → ( ℑ ‘ ( log ‘ 𝑥 ) ) < π ) |
| 28 | 18 | renegcli | ⊢ - π ∈ ℝ |
| 29 | 28 | rexri | ⊢ - π ∈ ℝ* |
| 30 | 18 | rexri | ⊢ π ∈ ℝ* |
| 31 | elioo2 | ⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ) → ( ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ( - π (,) π ) ↔ ( ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ℝ ∧ - π < ( ℑ ‘ ( log ‘ 𝑥 ) ) ∧ ( ℑ ‘ ( log ‘ 𝑥 ) ) < π ) ) ) | |
| 32 | 29 30 31 | mp2an | ⊢ ( ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ( - π (,) π ) ↔ ( ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ℝ ∧ - π < ( ℑ ‘ ( log ‘ 𝑥 ) ) ∧ ( ℑ ‘ ( log ‘ 𝑥 ) ) < π ) ) |
| 33 | 15 17 27 32 | syl3anbrc | ⊢ ( 𝑥 ∈ 𝐷 → ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ( - π (,) π ) ) |
| 34 | imf | ⊢ ℑ : ℂ ⟶ ℝ | |
| 35 | ffn | ⊢ ( ℑ : ℂ ⟶ ℝ → ℑ Fn ℂ ) | |
| 36 | elpreima | ⊢ ( ℑ Fn ℂ → ( ( log ‘ 𝑥 ) ∈ ( ◡ ℑ “ ( - π (,) π ) ) ↔ ( ( log ‘ 𝑥 ) ∈ ℂ ∧ ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ( - π (,) π ) ) ) ) | |
| 37 | 34 35 36 | mp2b | ⊢ ( ( log ‘ 𝑥 ) ∈ ( ◡ ℑ “ ( - π (,) π ) ) ↔ ( ( log ‘ 𝑥 ) ∈ ℂ ∧ ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ( - π (,) π ) ) ) |
| 38 | 14 33 37 | sylanbrc | ⊢ ( 𝑥 ∈ 𝐷 → ( log ‘ 𝑥 ) ∈ ( ◡ ℑ “ ( - π (,) π ) ) ) |
| 39 | 10 38 | mprgbir | ⊢ ( log “ 𝐷 ) ⊆ ( ◡ ℑ “ ( - π (,) π ) ) |
| 40 | df-ioo | ⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
| 41 | df-ioc | ⊢ (,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) | |
| 42 | idd | ⊢ ( ( - π ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( - π < 𝑤 → - π < 𝑤 ) ) | |
| 43 | xrltle | ⊢ ( ( 𝑤 ∈ ℝ* ∧ π ∈ ℝ* ) → ( 𝑤 < π → 𝑤 ≤ π ) ) | |
| 44 | 40 41 42 43 | ixxssixx | ⊢ ( - π (,) π ) ⊆ ( - π (,] π ) |
| 45 | imass2 | ⊢ ( ( - π (,) π ) ⊆ ( - π (,] π ) → ( ◡ ℑ “ ( - π (,) π ) ) ⊆ ( ◡ ℑ “ ( - π (,] π ) ) ) | |
| 46 | 44 45 | ax-mp | ⊢ ( ◡ ℑ “ ( - π (,) π ) ) ⊆ ( ◡ ℑ “ ( - π (,] π ) ) |
| 47 | logrn | ⊢ ran log = ( ◡ ℑ “ ( - π (,] π ) ) | |
| 48 | 46 47 | sseqtrri | ⊢ ( ◡ ℑ “ ( - π (,) π ) ) ⊆ ran log |
| 49 | 48 | sseli | ⊢ ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) → 𝑥 ∈ ran log ) |
| 50 | logef | ⊢ ( 𝑥 ∈ ran log → ( log ‘ ( exp ‘ 𝑥 ) ) = 𝑥 ) | |
| 51 | 49 50 | syl | ⊢ ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) → ( log ‘ ( exp ‘ 𝑥 ) ) = 𝑥 ) |
| 52 | elpreima | ⊢ ( ℑ Fn ℂ → ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ) ) | |
| 53 | 34 35 52 | mp2b | ⊢ ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ) |
| 54 | efcl | ⊢ ( 𝑥 ∈ ℂ → ( exp ‘ 𝑥 ) ∈ ℂ ) | |
| 55 | 54 | adantr | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → ( exp ‘ 𝑥 ) ∈ ℂ ) |
| 56 | 53 55 | sylbi | ⊢ ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) → ( exp ‘ 𝑥 ) ∈ ℂ ) |
| 57 | 53 | simplbi | ⊢ ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) → 𝑥 ∈ ℂ ) |
| 58 | 57 | imcld | ⊢ ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) → ( ℑ ‘ 𝑥 ) ∈ ℝ ) |
| 59 | eliooord | ⊢ ( ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) → ( - π < ( ℑ ‘ 𝑥 ) ∧ ( ℑ ‘ 𝑥 ) < π ) ) | |
| 60 | 53 59 | simplbiim | ⊢ ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) → ( - π < ( ℑ ‘ 𝑥 ) ∧ ( ℑ ‘ 𝑥 ) < π ) ) |
| 61 | 60 | simprd | ⊢ ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) → ( ℑ ‘ 𝑥 ) < π ) |
| 62 | 58 61 | ltned | ⊢ ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) → ( ℑ ‘ 𝑥 ) ≠ π ) |
| 63 | 51 | adantr | ⊢ ( ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ( -∞ (,] 0 ) ) → ( log ‘ ( exp ‘ 𝑥 ) ) = 𝑥 ) |
| 64 | 63 | fveq2d | ⊢ ( ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ( -∞ (,] 0 ) ) → ( ℑ ‘ ( log ‘ ( exp ‘ 𝑥 ) ) ) = ( ℑ ‘ 𝑥 ) ) |
| 65 | simpr | ⊢ ( ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ( -∞ (,] 0 ) ) → ( exp ‘ 𝑥 ) ∈ ( -∞ (,] 0 ) ) | |
| 66 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 67 | 0re | ⊢ 0 ∈ ℝ | |
| 68 | elioc2 | ⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ ) → ( ( exp ‘ 𝑥 ) ∈ ( -∞ (,] 0 ) ↔ ( ( exp ‘ 𝑥 ) ∈ ℝ ∧ -∞ < ( exp ‘ 𝑥 ) ∧ ( exp ‘ 𝑥 ) ≤ 0 ) ) ) | |
| 69 | 66 67 68 | mp2an | ⊢ ( ( exp ‘ 𝑥 ) ∈ ( -∞ (,] 0 ) ↔ ( ( exp ‘ 𝑥 ) ∈ ℝ ∧ -∞ < ( exp ‘ 𝑥 ) ∧ ( exp ‘ 𝑥 ) ≤ 0 ) ) |
| 70 | 65 69 | sylib | ⊢ ( ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ( -∞ (,] 0 ) ) → ( ( exp ‘ 𝑥 ) ∈ ℝ ∧ -∞ < ( exp ‘ 𝑥 ) ∧ ( exp ‘ 𝑥 ) ≤ 0 ) ) |
| 71 | 70 | simp1d | ⊢ ( ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ( -∞ (,] 0 ) ) → ( exp ‘ 𝑥 ) ∈ ℝ ) |
| 72 | 0red | ⊢ ( ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ( -∞ (,] 0 ) ) → 0 ∈ ℝ ) | |
| 73 | 70 | simp3d | ⊢ ( ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ( -∞ (,] 0 ) ) → ( exp ‘ 𝑥 ) ≤ 0 ) |
| 74 | efne0 | ⊢ ( 𝑥 ∈ ℂ → ( exp ‘ 𝑥 ) ≠ 0 ) | |
| 75 | 57 74 | syl | ⊢ ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) → ( exp ‘ 𝑥 ) ≠ 0 ) |
| 76 | 75 | adantr | ⊢ ( ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ( -∞ (,] 0 ) ) → ( exp ‘ 𝑥 ) ≠ 0 ) |
| 77 | 76 | necomd | ⊢ ( ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ( -∞ (,] 0 ) ) → 0 ≠ ( exp ‘ 𝑥 ) ) |
| 78 | 71 72 73 77 | leneltd | ⊢ ( ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ( -∞ (,] 0 ) ) → ( exp ‘ 𝑥 ) < 0 ) |
| 79 | 71 78 | negelrpd | ⊢ ( ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ( -∞ (,] 0 ) ) → - ( exp ‘ 𝑥 ) ∈ ℝ+ ) |
| 80 | lognegb | ⊢ ( ( ( exp ‘ 𝑥 ) ∈ ℂ ∧ ( exp ‘ 𝑥 ) ≠ 0 ) → ( - ( exp ‘ 𝑥 ) ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ ( exp ‘ 𝑥 ) ) ) = π ) ) | |
| 81 | 56 75 80 | syl2anc | ⊢ ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) → ( - ( exp ‘ 𝑥 ) ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ ( exp ‘ 𝑥 ) ) ) = π ) ) |
| 82 | 81 | adantr | ⊢ ( ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ( -∞ (,] 0 ) ) → ( - ( exp ‘ 𝑥 ) ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ ( exp ‘ 𝑥 ) ) ) = π ) ) |
| 83 | 79 82 | mpbid | ⊢ ( ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ( -∞ (,] 0 ) ) → ( ℑ ‘ ( log ‘ ( exp ‘ 𝑥 ) ) ) = π ) |
| 84 | 64 83 | eqtr3d | ⊢ ( ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ( -∞ (,] 0 ) ) → ( ℑ ‘ 𝑥 ) = π ) |
| 85 | 84 | ex | ⊢ ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) → ( ( exp ‘ 𝑥 ) ∈ ( -∞ (,] 0 ) → ( ℑ ‘ 𝑥 ) = π ) ) |
| 86 | 85 | necon3ad | ⊢ ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) → ( ( ℑ ‘ 𝑥 ) ≠ π → ¬ ( exp ‘ 𝑥 ) ∈ ( -∞ (,] 0 ) ) ) |
| 87 | 62 86 | mpd | ⊢ ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) → ¬ ( exp ‘ 𝑥 ) ∈ ( -∞ (,] 0 ) ) |
| 88 | 56 87 | eldifd | ⊢ ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) → ( exp ‘ 𝑥 ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
| 89 | 88 1 | eleqtrrdi | ⊢ ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) → ( exp ‘ 𝑥 ) ∈ 𝐷 ) |
| 90 | funfvima2 | ⊢ ( ( Fun log ∧ 𝐷 ⊆ dom log ) → ( ( exp ‘ 𝑥 ) ∈ 𝐷 → ( log ‘ ( exp ‘ 𝑥 ) ) ∈ ( log “ 𝐷 ) ) ) | |
| 91 | 4 8 90 | mp2an | ⊢ ( ( exp ‘ 𝑥 ) ∈ 𝐷 → ( log ‘ ( exp ‘ 𝑥 ) ) ∈ ( log “ 𝐷 ) ) |
| 92 | 89 91 | syl | ⊢ ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) → ( log ‘ ( exp ‘ 𝑥 ) ) ∈ ( log “ 𝐷 ) ) |
| 93 | 51 92 | eqeltrrd | ⊢ ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) → 𝑥 ∈ ( log “ 𝐷 ) ) |
| 94 | 93 | ssriv | ⊢ ( ◡ ℑ “ ( - π (,) π ) ) ⊆ ( log “ 𝐷 ) |
| 95 | 39 94 | eqssi | ⊢ ( log “ 𝐷 ) = ( ◡ ℑ “ ( - π (,) π ) ) |
| 96 | imcncf | ⊢ ℑ ∈ ( ℂ –cn→ ℝ ) | |
| 97 | ssid | ⊢ ℂ ⊆ ℂ | |
| 98 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 99 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 100 | 99 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 101 | 100 | toponrestid | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 102 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 103 | 99 101 102 | cncfcn | ⊢ ( ( ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( ℂ –cn→ ℝ ) = ( ( TopOpen ‘ ℂfld ) Cn ( topGen ‘ ran (,) ) ) ) |
| 104 | 97 98 103 | mp2an | ⊢ ( ℂ –cn→ ℝ ) = ( ( TopOpen ‘ ℂfld ) Cn ( topGen ‘ ran (,) ) ) |
| 105 | 96 104 | eleqtri | ⊢ ℑ ∈ ( ( TopOpen ‘ ℂfld ) Cn ( topGen ‘ ran (,) ) ) |
| 106 | iooretop | ⊢ ( - π (,) π ) ∈ ( topGen ‘ ran (,) ) | |
| 107 | cnima | ⊢ ( ( ℑ ∈ ( ( TopOpen ‘ ℂfld ) Cn ( topGen ‘ ran (,) ) ) ∧ ( - π (,) π ) ∈ ( topGen ‘ ran (,) ) ) → ( ◡ ℑ “ ( - π (,) π ) ) ∈ ( TopOpen ‘ ℂfld ) ) | |
| 108 | 105 106 107 | mp2an | ⊢ ( ◡ ℑ “ ( - π (,) π ) ) ∈ ( TopOpen ‘ ℂfld ) |
| 109 | 95 108 | eqeltri | ⊢ ( log “ 𝐷 ) ∈ ( TopOpen ‘ ℂfld ) |