This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007) (Revised by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ixx.1 | ⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) | |
| ixx.2 | ⊢ 𝑃 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑇 𝑧 ∧ 𝑧 𝑈 𝑦 ) } ) | ||
| ixx.3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 𝑅 𝑤 → 𝐴 𝑇 𝑤 ) ) | ||
| ixx.4 | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 𝑆 𝐵 → 𝑤 𝑈 𝐵 ) ) | ||
| Assertion | ixxssixx | ⊢ ( 𝐴 𝑂 𝐵 ) ⊆ ( 𝐴 𝑃 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixx.1 | ⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) | |
| 2 | ixx.2 | ⊢ 𝑃 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑇 𝑧 ∧ 𝑧 𝑈 𝑦 ) } ) | |
| 3 | ixx.3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 𝑅 𝑤 → 𝐴 𝑇 𝑤 ) ) | |
| 4 | ixx.4 | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 𝑆 𝐵 → 𝑤 𝑈 𝐵 ) ) | |
| 5 | 1 | elmpocl | ⊢ ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
| 6 | simp1 | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) → 𝑤 ∈ ℝ* ) | |
| 7 | 6 | a1i | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) → 𝑤 ∈ ℝ* ) ) |
| 8 | simpl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → 𝐴 ∈ ℝ* ) | |
| 9 | 3simpa | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) → ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ) ) | |
| 10 | 3 | expimpd | ⊢ ( 𝐴 ∈ ℝ* → ( ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ) → 𝐴 𝑇 𝑤 ) ) |
| 11 | 8 9 10 | syl2im | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) → 𝐴 𝑇 𝑤 ) ) |
| 12 | simpr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → 𝐵 ∈ ℝ* ) | |
| 13 | 3simpb | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) → ( 𝑤 ∈ ℝ* ∧ 𝑤 𝑆 𝐵 ) ) | |
| 14 | 4 | ancoms | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝑤 𝑆 𝐵 → 𝑤 𝑈 𝐵 ) ) |
| 15 | 14 | expimpd | ⊢ ( 𝐵 ∈ ℝ* → ( ( 𝑤 ∈ ℝ* ∧ 𝑤 𝑆 𝐵 ) → 𝑤 𝑈 𝐵 ) ) |
| 16 | 12 13 15 | syl2im | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) → 𝑤 𝑈 𝐵 ) ) |
| 17 | 7 11 16 | 3jcad | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) → ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑇 𝑤 ∧ 𝑤 𝑈 𝐵 ) ) ) |
| 18 | 1 | elixx1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ↔ ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) ) ) |
| 19 | 2 | elixx1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) ↔ ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑇 𝑤 ∧ 𝑤 𝑈 𝐵 ) ) ) |
| 20 | 17 18 19 | 3imtr4d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) → 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) ) ) |
| 21 | 5 20 | mpcom | ⊢ ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) → 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) ) |
| 22 | 21 | ssriv | ⊢ ( 𝐴 𝑂 𝐵 ) ⊆ ( 𝐴 𝑃 𝐵 ) |