This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvivth . (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvivth.1 | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| dvivth.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐴 (,) 𝐵 ) ) | ||
| dvivth.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) | ||
| dvivth.4 | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | ||
| dvivth.5 | ⊢ ( 𝜑 → 𝑀 < 𝑁 ) | ||
| dvivth.6 | ⊢ ( 𝜑 → 𝐶 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) | ||
| dvivth.7 | ⊢ 𝐺 = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐶 · 𝑦 ) ) ) | ||
| Assertion | dvivthlem1 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvivth.1 | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 2 | dvivth.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 3 | dvivth.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) | |
| 4 | dvivth.4 | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | |
| 5 | dvivth.5 | ⊢ ( 𝜑 → 𝑀 < 𝑁 ) | |
| 6 | dvivth.6 | ⊢ ( 𝜑 → 𝐶 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) | |
| 7 | dvivth.7 | ⊢ 𝐺 = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐶 · 𝑦 ) ) ) | |
| 8 | ioossre | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ | |
| 9 | 8 1 | sselid | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 10 | 8 2 | sselid | ⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 11 | 9 10 5 | ltled | ⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
| 12 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | |
| 13 | 3 12 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 14 | 13 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 15 | dvfre | ⊢ ( ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) | |
| 16 | 13 8 15 | sylancl | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
| 17 | 2 4 | eleqtrrd | ⊢ ( 𝜑 → 𝑁 ∈ dom ( ℝ D 𝐹 ) ) |
| 18 | 16 17 | ffvelcdmd | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ℝ ) |
| 19 | 1 4 | eleqtrrd | ⊢ ( 𝜑 → 𝑀 ∈ dom ( ℝ D 𝐹 ) ) |
| 20 | 16 19 | ffvelcdmd | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ∈ ℝ ) |
| 21 | iccssre | ⊢ ( ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ∈ ℝ ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ⊆ ℝ ) | |
| 22 | 18 20 21 | syl2anc | ⊢ ( 𝜑 → ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ⊆ ℝ ) |
| 23 | 22 6 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐶 ∈ ℝ ) |
| 25 | 8 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 26 | 25 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ℝ ) |
| 27 | 24 26 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐶 · 𝑦 ) ∈ ℝ ) |
| 28 | 14 27 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐶 · 𝑦 ) ) ∈ ℝ ) |
| 29 | 28 7 | fmptd | ⊢ ( 𝜑 → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 30 | iccssioo2 | ⊢ ( ( 𝑀 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑁 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑀 [,] 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) | |
| 31 | 1 2 30 | syl2anc | ⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 32 | 29 31 | fssresd | ⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
| 33 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 34 | 33 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 35 | fss | ⊢ ( ( 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) | |
| 36 | 29 33 35 | sylancl | ⊢ ( 𝜑 → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 37 | 7 | oveq2i | ⊢ ( ℝ D 𝐺 ) = ( ℝ D ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐶 · 𝑦 ) ) ) ) |
| 38 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 39 | 38 | a1i | ⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 40 | 14 | recnd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 41 | 4 | feq2d | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ↔ ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
| 42 | 16 41 | mpbid | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 43 | 42 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ℝ ) |
| 44 | 13 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 45 | 44 | oveq2d | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( ℝ D ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 46 | 42 | feqmptd | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
| 47 | 45 46 | eqtr3d | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
| 48 | 27 | recnd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐶 · 𝑦 ) ∈ ℂ ) |
| 49 | remulcl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐶 · 𝑦 ) ∈ ℝ ) | |
| 50 | 23 49 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐶 · 𝑦 ) ∈ ℝ ) |
| 51 | 50 | recnd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐶 · 𝑦 ) ∈ ℂ ) |
| 52 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐶 ∈ ℝ ) |
| 53 | 34 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 54 | 1cnd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℂ ) | |
| 55 | 39 | dvmptid | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ 𝑦 ) ) = ( 𝑦 ∈ ℝ ↦ 1 ) ) |
| 56 | 23 | recnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 57 | 39 53 54 55 56 | dvmptcmul | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝐶 · 𝑦 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( 𝐶 · 1 ) ) ) |
| 58 | 56 | mulridd | ⊢ ( 𝜑 → ( 𝐶 · 1 ) = 𝐶 ) |
| 59 | 58 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ ( 𝐶 · 1 ) ) = ( 𝑦 ∈ ℝ ↦ 𝐶 ) ) |
| 60 | 57 59 | eqtrd | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝐶 · 𝑦 ) ) ) = ( 𝑦 ∈ ℝ ↦ 𝐶 ) ) |
| 61 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 62 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 63 | iooretop | ⊢ ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) | |
| 64 | 63 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ) |
| 65 | 39 51 52 60 25 61 62 64 | dvmptres | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐶 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐶 ) ) |
| 66 | 39 40 43 47 48 24 65 | dvmptsub | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐶 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) ) |
| 67 | 37 66 | eqtrid | ⊢ ( 𝜑 → ( ℝ D 𝐺 ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) ) |
| 68 | 67 | dmeqd | ⊢ ( 𝜑 → dom ( ℝ D 𝐺 ) = dom ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) ) |
| 69 | dmmptg | ⊢ ( ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ∈ V → dom ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) = ( 𝐴 (,) 𝐵 ) ) | |
| 70 | ovex | ⊢ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ∈ V | |
| 71 | 70 | a1i | ⊢ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ∈ V ) |
| 72 | 69 71 | mprg | ⊢ dom ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) = ( 𝐴 (,) 𝐵 ) |
| 73 | 68 72 | eqtrdi | ⊢ ( 𝜑 → dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) |
| 74 | dvcn | ⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) ∧ dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) → 𝐺 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | |
| 75 | 34 36 25 73 74 | syl31anc | ⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 76 | rescncf | ⊢ ( ( 𝑀 [,] 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) → ( 𝐺 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) ) ) | |
| 77 | 31 75 76 | sylc | ⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) ) |
| 78 | cncfcdm | ⊢ ( ( ℝ ⊆ ℂ ∧ ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) ) → ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ↔ ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) ) | |
| 79 | 33 77 78 | sylancr | ⊢ ( 𝜑 → ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ↔ ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) ) |
| 80 | 32 79 | mpbird | ⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) |
| 81 | 9 10 11 80 | evthicc | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) ∧ ∃ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ) ) |
| 82 | 81 | simpld | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) ) |
| 83 | fvres | ⊢ ( 𝑧 ∈ ( 𝑀 [,] 𝑁 ) → ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 84 | fvres | ⊢ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) → ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 85 | 83 84 | breqan12rd | ⊢ ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ∧ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
| 86 | 85 | ralbidva | ⊢ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) → ( ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) ↔ ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
| 87 | 86 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) ↔ ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
| 88 | ioossicc | ⊢ ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) | |
| 89 | ssralv | ⊢ ( ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) → ( ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) | |
| 90 | 88 89 | ax-mp | ⊢ ( ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 91 | 87 90 | biimtrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) → ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
| 92 | 31 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 93 | 42 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
| 94 | 92 93 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
| 95 | 94 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 96 | 95 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 97 | 56 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐶 ∈ ℂ ) |
| 98 | 67 | fveq1d | ⊢ ( 𝜑 → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) = ( ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) ‘ 𝑥 ) ) |
| 99 | 98 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) = ( ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) ‘ 𝑥 ) ) |
| 100 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) | |
| 101 | 100 | oveq1d | ⊢ ( 𝑦 = 𝑥 → ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
| 102 | eqid | ⊢ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) | |
| 103 | ovex | ⊢ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ∈ V | |
| 104 | 101 102 103 | fvmpt | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) ‘ 𝑥 ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
| 105 | 92 104 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) ‘ 𝑥 ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
| 106 | 99 105 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
| 107 | 106 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
| 108 | 29 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 109 | 8 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 110 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) | |
| 111 | 88 31 | sstrid | ⊢ ( 𝜑 → ( 𝑀 (,) 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 112 | 111 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝑀 (,) 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 113 | 92 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 114 | 73 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) |
| 115 | 113 114 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ dom ( ℝ D 𝐺 ) ) |
| 116 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) | |
| 117 | fveq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑤 ) ) | |
| 118 | 117 | breq1d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
| 119 | 118 | cbvralvw | ⊢ ( ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ↔ ∀ 𝑤 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 120 | 116 119 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑤 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 121 | 108 109 110 112 115 120 | dvferm | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) = 0 ) |
| 122 | 107 121 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) = 0 ) |
| 123 | 96 97 122 | subeq0d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) |
| 124 | 123 | exp32 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) → ( ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) ) |
| 125 | vex | ⊢ 𝑥 ∈ V | |
| 126 | 125 | elpr | ⊢ ( 𝑥 ∈ { 𝑀 , 𝑁 } ↔ ( 𝑥 = 𝑀 ∨ 𝑥 = 𝑁 ) ) |
| 127 | 106 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
| 128 | 29 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 129 | 8 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 130 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 = 𝑀 ) | |
| 131 | eliooord | ⊢ ( 𝑀 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝑀 ∧ 𝑀 < 𝐵 ) ) | |
| 132 | 1 131 | syl | ⊢ ( 𝜑 → ( 𝐴 < 𝑀 ∧ 𝑀 < 𝐵 ) ) |
| 133 | 132 | simpld | ⊢ ( 𝜑 → 𝐴 < 𝑀 ) |
| 134 | ne0i | ⊢ ( 𝑀 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) | |
| 135 | ndmioo | ⊢ ( ¬ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = ∅ ) | |
| 136 | 135 | necon1ai | ⊢ ( ( 𝐴 (,) 𝐵 ) ≠ ∅ → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
| 137 | 1 134 136 | 3syl | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
| 138 | 137 | simpld | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 139 | 10 | rexrd | ⊢ ( 𝜑 → 𝑁 ∈ ℝ* ) |
| 140 | elioo2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑁 ∈ ℝ* ) → ( 𝑀 ∈ ( 𝐴 (,) 𝑁 ) ↔ ( 𝑀 ∈ ℝ ∧ 𝐴 < 𝑀 ∧ 𝑀 < 𝑁 ) ) ) | |
| 141 | 138 139 140 | syl2anc | ⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝐴 (,) 𝑁 ) ↔ ( 𝑀 ∈ ℝ ∧ 𝐴 < 𝑀 ∧ 𝑀 < 𝑁 ) ) ) |
| 142 | 9 133 5 141 | mpbir3and | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝐴 (,) 𝑁 ) ) |
| 143 | 142 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑀 ∈ ( 𝐴 (,) 𝑁 ) ) |
| 144 | 130 143 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝐴 (,) 𝑁 ) ) |
| 145 | 137 | simprd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 146 | eliooord | ⊢ ( 𝑁 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝑁 ∧ 𝑁 < 𝐵 ) ) | |
| 147 | 2 146 | syl | ⊢ ( 𝜑 → ( 𝐴 < 𝑁 ∧ 𝑁 < 𝐵 ) ) |
| 148 | 147 | simprd | ⊢ ( 𝜑 → 𝑁 < 𝐵 ) |
| 149 | 139 145 148 | xrltled | ⊢ ( 𝜑 → 𝑁 ≤ 𝐵 ) |
| 150 | iooss2 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑁 ≤ 𝐵 ) → ( 𝐴 (,) 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) | |
| 151 | 145 149 150 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 (,) 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 152 | 151 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝐴 (,) 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 153 | 92 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 154 | 73 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) |
| 155 | 153 154 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ dom ( ℝ D 𝐺 ) ) |
| 156 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) | |
| 157 | 156 119 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑤 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 158 | 130 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝑥 (,) 𝑁 ) = ( 𝑀 (,) 𝑁 ) ) |
| 159 | 157 158 | raleqtrrdv | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑤 ∈ ( 𝑥 (,) 𝑁 ) ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 160 | 128 129 144 152 155 159 | dvferm1 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) ≤ 0 ) |
| 161 | 127 160 | eqbrtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ≤ 0 ) |
| 162 | 94 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
| 163 | 23 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐶 ∈ ℝ ) |
| 164 | 162 163 | suble0d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ≤ 0 ↔ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ≤ 𝐶 ) ) |
| 165 | 161 164 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ≤ 𝐶 ) |
| 166 | elicc2 | ⊢ ( ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ∈ ℝ ) → ( 𝐶 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ↔ ( 𝐶 ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ≤ 𝐶 ∧ 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) ) | |
| 167 | 18 20 166 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ↔ ( 𝐶 ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ≤ 𝐶 ∧ 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) ) |
| 168 | 6 167 | mpbid | ⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ≤ 𝐶 ∧ 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) |
| 169 | 168 | simp3d | ⊢ ( 𝜑 → 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) |
| 170 | 169 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) |
| 171 | 130 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) |
| 172 | 170 171 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 173 | 162 163 | letri3d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ↔ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ≤ 𝐶 ∧ 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 174 | 165 172 173 | mpbir2and | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) |
| 175 | 174 | exp32 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑥 = 𝑀 → ( ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) ) |
| 176 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 = 𝑁 ) | |
| 177 | 176 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) |
| 178 | 168 | simp2d | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ≤ 𝐶 ) |
| 179 | 178 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ≤ 𝐶 ) |
| 180 | 177 179 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ≤ 𝐶 ) |
| 181 | 29 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 182 | 8 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 183 | 9 | rexrd | ⊢ ( 𝜑 → 𝑀 ∈ ℝ* ) |
| 184 | elioo2 | ⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑁 ∈ ( 𝑀 (,) 𝐵 ) ↔ ( 𝑁 ∈ ℝ ∧ 𝑀 < 𝑁 ∧ 𝑁 < 𝐵 ) ) ) | |
| 185 | 183 145 184 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 (,) 𝐵 ) ↔ ( 𝑁 ∈ ℝ ∧ 𝑀 < 𝑁 ∧ 𝑁 < 𝐵 ) ) ) |
| 186 | 10 5 148 185 | mpbir3and | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 (,) 𝐵 ) ) |
| 187 | 186 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑁 ∈ ( 𝑀 (,) 𝐵 ) ) |
| 188 | 176 187 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝑀 (,) 𝐵 ) ) |
| 189 | 138 183 133 | xrltled | ⊢ ( 𝜑 → 𝐴 ≤ 𝑀 ) |
| 190 | iooss1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝑀 ) → ( 𝑀 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) | |
| 191 | 138 189 190 | syl2anc | ⊢ ( 𝜑 → ( 𝑀 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 192 | 191 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝑀 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 193 | 92 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 194 | 73 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) |
| 195 | 193 194 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ dom ( ℝ D 𝐺 ) ) |
| 196 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) | |
| 197 | 196 119 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑤 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 198 | 176 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝑀 (,) 𝑥 ) = ( 𝑀 (,) 𝑁 ) ) |
| 199 | 197 198 | raleqtrrdv | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑤 ∈ ( 𝑀 (,) 𝑥 ) ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 200 | 181 182 188 192 195 199 | dvferm2 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 0 ≤ ( ( ℝ D 𝐺 ) ‘ 𝑥 ) ) |
| 201 | 106 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
| 202 | 200 201 | breqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 0 ≤ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
| 203 | 94 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
| 204 | 23 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐶 ∈ ℝ ) |
| 205 | 203 204 | subge0d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 0 ≤ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ↔ 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 206 | 202 205 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 207 | 203 204 | letri3d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ↔ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ≤ 𝐶 ∧ 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 208 | 180 206 207 | mpbir2and | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) |
| 209 | 208 | exp32 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑥 = 𝑁 → ( ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) ) |
| 210 | 175 209 | jaod | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( 𝑥 = 𝑀 ∨ 𝑥 = 𝑁 ) → ( ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) ) |
| 211 | 126 210 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑥 ∈ { 𝑀 , 𝑁 } → ( ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) ) |
| 212 | elun | ⊢ ( 𝑥 ∈ ( ( 𝑀 (,) 𝑁 ) ∪ { 𝑀 , 𝑁 } ) ↔ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∨ 𝑥 ∈ { 𝑀 , 𝑁 } ) ) | |
| 213 | prunioo | ⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝑁 ∈ ℝ* ∧ 𝑀 ≤ 𝑁 ) → ( ( 𝑀 (,) 𝑁 ) ∪ { 𝑀 , 𝑁 } ) = ( 𝑀 [,] 𝑁 ) ) | |
| 214 | 183 139 11 213 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑀 (,) 𝑁 ) ∪ { 𝑀 , 𝑁 } ) = ( 𝑀 [,] 𝑁 ) ) |
| 215 | 214 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝑀 (,) 𝑁 ) ∪ { 𝑀 , 𝑁 } ) ↔ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ) |
| 216 | 212 215 | bitr3id | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∨ 𝑥 ∈ { 𝑀 , 𝑁 } ) ↔ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ) |
| 217 | 216 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∨ 𝑥 ∈ { 𝑀 , 𝑁 } ) ) |
| 218 | 124 211 217 | mpjaod | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) |
| 219 | 91 218 | syld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) |
| 220 | 219 | reximdva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) → ∃ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) |
| 221 | 82 220 | mpd | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) |