This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Darboux' theorem, or the intermediate value theorem for derivatives. A differentiable function's derivative satisfies the intermediate value property, even though it may not be continuous (so that ivthicc does not directly apply). (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvivth.1 | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| dvivth.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐴 (,) 𝐵 ) ) | ||
| dvivth.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) | ||
| dvivth.4 | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | ||
| Assertion | dvivth | ⊢ ( 𝜑 → ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ⊆ ran ( ℝ D 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvivth.1 | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 2 | dvivth.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 3 | dvivth.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) | |
| 4 | dvivth.4 | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | |
| 5 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑀 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 6 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑁 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 7 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | |
| 8 | 3 7 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 9 | 8 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ℝ ) |
| 10 | 9 | renegcld | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ) → - ( 𝐹 ‘ 𝑤 ) ∈ ℝ ) |
| 11 | 10 | fmpttd | ⊢ ( 𝜑 → ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 12 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 13 | ssid | ⊢ ℂ ⊆ ℂ | |
| 14 | cncfss | ⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | |
| 15 | 12 13 14 | mp2an | ⊢ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) |
| 16 | 15 3 | sselid | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 17 | eqid | ⊢ ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) = ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) | |
| 18 | 17 | negfcncf | ⊢ ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 19 | 16 18 | syl | ⊢ ( 𝜑 → ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 20 | cncfcdm | ⊢ ( ( ℝ ⊆ ℂ ∧ ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) → ( ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ↔ ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) | |
| 21 | 12 19 20 | sylancr | ⊢ ( 𝜑 → ( ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ↔ ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
| 22 | 11 21 | mpbird | ⊢ ( 𝜑 → ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) |
| 24 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 25 | 24 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ℝ ∈ { ℝ , ℂ } ) |
| 26 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 27 | 26 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) ∧ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ℝ ) |
| 28 | 27 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) ∧ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ℂ ) |
| 29 | fvexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) ∧ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ∈ V ) | |
| 30 | 26 | feqmptd | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝐹 = ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑤 ) ) ) |
| 31 | 30 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ℝ D 𝐹 ) = ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 32 | ioossre | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ | |
| 33 | dvfre | ⊢ ( ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) | |
| 34 | 8 32 33 | sylancl | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
| 35 | 4 | feq2d | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ↔ ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
| 36 | 34 35 | mpbid | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 38 | 37 | feqmptd | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ℝ D 𝐹 ) = ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ) |
| 39 | 31 38 | eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑤 ) ) ) = ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ) |
| 40 | 25 28 29 39 | dvmptneg | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) = ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ) |
| 41 | 40 | dmeqd | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → dom ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) = dom ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ) |
| 42 | dmmptg | ⊢ ( ∀ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ∈ V → dom ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) = ( 𝐴 (,) 𝐵 ) ) | |
| 43 | negex | ⊢ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ∈ V | |
| 44 | 43 | a1i | ⊢ ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) → - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ∈ V ) |
| 45 | 42 44 | mprg | ⊢ dom ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) = ( 𝐴 (,) 𝐵 ) |
| 46 | 41 45 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → dom ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 47 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑀 < 𝑁 ) | |
| 48 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) | |
| 49 | 36 1 | ffvelcdmd | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ∈ ℝ ) |
| 50 | 49 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ∈ ℝ ) |
| 51 | 2 4 | eleqtrrd | ⊢ ( 𝜑 → 𝑁 ∈ dom ( ℝ D 𝐹 ) ) |
| 52 | 34 51 | ffvelcdmd | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ℝ ) |
| 53 | 52 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ℝ ) |
| 54 | iccssre | ⊢ ( ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ℝ ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ⊆ ℝ ) | |
| 55 | 49 52 54 | syl2anc | ⊢ ( 𝜑 → ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ⊆ ℝ ) |
| 56 | 55 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ⊆ ℝ ) |
| 57 | 56 48 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑥 ∈ ℝ ) |
| 58 | iccneg | ⊢ ( ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ↔ - 𝑥 ∈ ( - ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] - ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) ) | |
| 59 | 50 53 57 58 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ↔ - 𝑥 ∈ ( - ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] - ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) ) |
| 60 | 48 59 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → - 𝑥 ∈ ( - ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] - ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) |
| 61 | 40 | fveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) ‘ 𝑁 ) = ( ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ‘ 𝑁 ) ) |
| 62 | fveq2 | ⊢ ( 𝑤 = 𝑁 → ( ( ℝ D 𝐹 ) ‘ 𝑤 ) = ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) | |
| 63 | 62 | negeqd | ⊢ ( 𝑤 = 𝑁 → - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) |
| 64 | eqid | ⊢ ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) = ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) | |
| 65 | negex | ⊢ - ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ V | |
| 66 | 63 64 65 | fvmpt | ⊢ ( 𝑁 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ‘ 𝑁 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) |
| 67 | 6 66 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ‘ 𝑁 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) |
| 68 | 61 67 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) ‘ 𝑁 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) |
| 69 | 40 | fveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) ‘ 𝑀 ) = ( ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ‘ 𝑀 ) ) |
| 70 | fveq2 | ⊢ ( 𝑤 = 𝑀 → ( ( ℝ D 𝐹 ) ‘ 𝑤 ) = ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) | |
| 71 | 70 | negeqd | ⊢ ( 𝑤 = 𝑀 → - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) |
| 72 | negex | ⊢ - ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ∈ V | |
| 73 | 71 64 72 | fvmpt | ⊢ ( 𝑀 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ‘ 𝑀 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) |
| 74 | 5 73 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ‘ 𝑀 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) |
| 75 | 69 74 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) ‘ 𝑀 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) |
| 76 | 68 75 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ( ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) ‘ 𝑁 ) [,] ( ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) ‘ 𝑀 ) ) = ( - ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] - ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) |
| 77 | 60 76 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → - 𝑥 ∈ ( ( ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) ‘ 𝑁 ) [,] ( ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) ‘ 𝑀 ) ) ) |
| 78 | eqid | ⊢ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑦 ) − ( - 𝑥 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑦 ) − ( - 𝑥 · 𝑦 ) ) ) | |
| 79 | 5 6 23 46 47 77 78 | dvivthlem2 | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → - 𝑥 ∈ ran ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 80 | 40 | rneqd | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ran ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) = ran ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ) |
| 81 | 79 80 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → - 𝑥 ∈ ran ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ) |
| 82 | negex | ⊢ - 𝑥 ∈ V | |
| 83 | 64 | elrnmpt | ⊢ ( - 𝑥 ∈ V → ( - 𝑥 ∈ ran ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ↔ ∃ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) - 𝑥 = - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ) |
| 84 | 82 83 | ax-mp | ⊢ ( - 𝑥 ∈ ran ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ↔ ∃ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) - 𝑥 = - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) |
| 85 | 81 84 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ∃ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) - 𝑥 = - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) |
| 86 | 57 | recnd | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑥 ∈ ℂ ) |
| 87 | 86 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) ∧ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ℂ ) |
| 88 | 25 28 29 39 | dvmptcl | ⊢ ( ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) ∧ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ∈ ℂ ) |
| 89 | 87 88 | neg11ad | ⊢ ( ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) ∧ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ) → ( - 𝑥 = - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ↔ 𝑥 = ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ) |
| 90 | eqcom | ⊢ ( 𝑥 = ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ↔ ( ( ℝ D 𝐹 ) ‘ 𝑤 ) = 𝑥 ) | |
| 91 | 89 90 | bitrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) ∧ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ) → ( - 𝑥 = - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ↔ ( ( ℝ D 𝐹 ) ‘ 𝑤 ) = 𝑥 ) ) |
| 92 | 91 | rexbidva | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ∃ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) - 𝑥 = - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ↔ ∃ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑤 ) = 𝑥 ) ) |
| 93 | 85 92 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ∃ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑤 ) = 𝑥 ) |
| 94 | 37 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ℝ D 𝐹 ) Fn ( 𝐴 (,) 𝐵 ) ) |
| 95 | fvelrnb | ⊢ ( ( ℝ D 𝐹 ) Fn ( 𝐴 (,) 𝐵 ) → ( 𝑥 ∈ ran ( ℝ D 𝐹 ) ↔ ∃ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑤 ) = 𝑥 ) ) | |
| 96 | 94 95 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( 𝑥 ∈ ran ( ℝ D 𝐹 ) ↔ ∃ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑤 ) = 𝑥 ) ) |
| 97 | 93 96 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑥 ∈ ran ( ℝ D 𝐹 ) ) |
| 98 | 97 | expr | ⊢ ( ( 𝜑 ∧ 𝑀 < 𝑁 ) → ( 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) → 𝑥 ∈ ran ( ℝ D 𝐹 ) ) ) |
| 99 | 98 | ssrdv | ⊢ ( ( 𝜑 ∧ 𝑀 < 𝑁 ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ⊆ ran ( ℝ D 𝐹 ) ) |
| 100 | fveq2 | ⊢ ( 𝑀 = 𝑁 → ( ( ℝ D 𝐹 ) ‘ 𝑀 ) = ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) | |
| 101 | 100 | oveq1d | ⊢ ( 𝑀 = 𝑁 → ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) |
| 102 | 52 | rexrd | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ℝ* ) |
| 103 | iccid | ⊢ ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ℝ* → ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) = { ( ( ℝ D 𝐹 ) ‘ 𝑁 ) } ) | |
| 104 | 102 103 | syl | ⊢ ( 𝜑 → ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) = { ( ( ℝ D 𝐹 ) ‘ 𝑁 ) } ) |
| 105 | 101 104 | sylan9eqr | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑁 ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) = { ( ( ℝ D 𝐹 ) ‘ 𝑁 ) } ) |
| 106 | 34 | ffnd | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) Fn dom ( ℝ D 𝐹 ) ) |
| 107 | fnfvelrn | ⊢ ( ( ( ℝ D 𝐹 ) Fn dom ( ℝ D 𝐹 ) ∧ 𝑁 ∈ dom ( ℝ D 𝐹 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ran ( ℝ D 𝐹 ) ) | |
| 108 | 106 51 107 | syl2anc | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ran ( ℝ D 𝐹 ) ) |
| 109 | 108 | snssd | ⊢ ( 𝜑 → { ( ( ℝ D 𝐹 ) ‘ 𝑁 ) } ⊆ ran ( ℝ D 𝐹 ) ) |
| 110 | 109 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑁 ) → { ( ( ℝ D 𝐹 ) ‘ 𝑁 ) } ⊆ ran ( ℝ D 𝐹 ) ) |
| 111 | 105 110 | eqsstrd | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑁 ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ⊆ ran ( ℝ D 𝐹 ) ) |
| 112 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 < 𝑀 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑁 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 113 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 < 𝑀 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑀 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 114 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 < 𝑀 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) |
| 115 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 < 𝑀 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
| 116 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑁 < 𝑀 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑁 < 𝑀 ) | |
| 117 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑁 < 𝑀 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) | |
| 118 | eqid | ⊢ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑦 ) − ( 𝑥 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑦 ) − ( 𝑥 · 𝑦 ) ) ) | |
| 119 | 112 113 114 115 116 117 118 | dvivthlem2 | ⊢ ( ( 𝜑 ∧ ( 𝑁 < 𝑀 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑥 ∈ ran ( ℝ D 𝐹 ) ) |
| 120 | 119 | expr | ⊢ ( ( 𝜑 ∧ 𝑁 < 𝑀 ) → ( 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) → 𝑥 ∈ ran ( ℝ D 𝐹 ) ) ) |
| 121 | 120 | ssrdv | ⊢ ( ( 𝜑 ∧ 𝑁 < 𝑀 ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ⊆ ran ( ℝ D 𝐹 ) ) |
| 122 | 32 1 | sselid | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 123 | 32 2 | sselid | ⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 124 | 122 123 | lttri4d | ⊢ ( 𝜑 → ( 𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ) ) |
| 125 | 99 111 121 124 | mpjao3dan | ⊢ ( 𝜑 → ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ⊆ ran ( ℝ D 𝐹 ) ) |