This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccssioo2 | ⊢ ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i | ⊢ ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) |
| 3 | ndmioo | ⊢ ( ¬ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = ∅ ) | |
| 4 | 3 | necon1ai | ⊢ ( ( 𝐴 (,) 𝐵 ) ≠ ∅ → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
| 5 | 2 4 | syl | ⊢ ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
| 6 | eliooord | ⊢ ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) |
| 8 | 7 | simpld | ⊢ ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 < 𝐶 ) |
| 9 | eliooord | ⊢ ( 𝐷 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝐷 ∧ 𝐷 < 𝐵 ) ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 < 𝐷 ∧ 𝐷 < 𝐵 ) ) |
| 11 | 10 | simprd | ⊢ ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐷 < 𝐵 ) |
| 12 | iccssioo | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐶 ∧ 𝐷 < 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) | |
| 13 | 5 8 11 12 | syl12anc | ⊢ ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |