This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvivth . (Contributed by Mario Carneiro, 20-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvivth.1 | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| dvivth.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐴 (,) 𝐵 ) ) | ||
| dvivth.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) | ||
| dvivth.4 | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | ||
| dvivth.5 | ⊢ ( 𝜑 → 𝑀 < 𝑁 ) | ||
| dvivth.6 | ⊢ ( 𝜑 → 𝐶 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) | ||
| dvivth.7 | ⊢ 𝐺 = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐶 · 𝑦 ) ) ) | ||
| Assertion | dvivthlem2 | ⊢ ( 𝜑 → 𝐶 ∈ ran ( ℝ D 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvivth.1 | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 2 | dvivth.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 3 | dvivth.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) | |
| 4 | dvivth.4 | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | |
| 5 | dvivth.5 | ⊢ ( 𝜑 → 𝑀 < 𝑁 ) | |
| 6 | dvivth.6 | ⊢ ( 𝜑 → 𝐶 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) | |
| 7 | dvivth.7 | ⊢ 𝐺 = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐶 · 𝑦 ) ) ) | |
| 8 | 1 2 3 4 5 6 7 | dvivthlem1 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) |
| 9 | dvf | ⊢ ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ | |
| 10 | 4 | feq2d | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ ↔ ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) |
| 11 | 9 10 | mpbii | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 12 | 11 | ffnd | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) Fn ( 𝐴 (,) 𝐵 ) ) |
| 13 | iccssioo2 | ⊢ ( ( 𝑀 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑁 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑀 [,] 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) | |
| 14 | 1 2 13 | syl2anc | ⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 15 | 14 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 16 | fnfvelrn | ⊢ ( ( ( ℝ D 𝐹 ) Fn ( 𝐴 (,) 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ran ( ℝ D 𝐹 ) ) | |
| 17 | 12 15 16 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ran ( ℝ D 𝐹 ) ) |
| 18 | eleq1 | ⊢ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ran ( ℝ D 𝐹 ) ↔ 𝐶 ∈ ran ( ℝ D 𝐹 ) ) ) | |
| 19 | 17 18 | syl5ibcom | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 → 𝐶 ∈ ran ( ℝ D 𝐹 ) ) ) |
| 20 | 19 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 → 𝐶 ∈ ran ( ℝ D 𝐹 ) ) ) |
| 21 | 8 20 | mpd | ⊢ ( 𝜑 → 𝐶 ∈ ran ( ℝ D 𝐹 ) ) |