This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of differentiable points is a subset of the interior of the domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcl.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| dvcl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | ||
| dvcl.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) | ||
| dvbssntr.j | ⊢ 𝐽 = ( 𝐾 ↾t 𝑆 ) | ||
| dvbssntr.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | dvbssntr | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcl.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| 2 | dvcl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 3 | dvcl.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) | |
| 4 | dvbssntr.j | ⊢ 𝐽 = ( 𝐾 ↾t 𝑆 ) | |
| 5 | dvbssntr.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 6 | 4 5 | dvfval | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( ( 𝑆 D 𝐹 ) = ∪ 𝑥 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ∧ ( 𝑆 D 𝐹 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) × ℂ ) ) ) |
| 7 | 1 2 3 6 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) = ∪ 𝑥 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ∧ ( 𝑆 D 𝐹 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) × ℂ ) ) ) |
| 8 | dmss | ⊢ ( ( 𝑆 D 𝐹 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) × ℂ ) → dom ( 𝑆 D 𝐹 ) ⊆ dom ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) × ℂ ) ) | |
| 9 | 7 8 | simpl2im | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) ⊆ dom ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) × ℂ ) ) |
| 10 | dmxpss | ⊢ dom ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) × ℂ ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) | |
| 11 | 9 10 | sstrdi | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) |