This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcmul.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvcmul.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | ||
| dvcmul.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | ||
| dvcmulf.df | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) | ||
| Assertion | dvcmulf | ⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑆 × { 𝐴 } ) ∘f · 𝐹 ) ) = ( ( 𝑆 × { 𝐴 } ) ∘f · ( 𝑆 D 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcmul.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvcmul.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 3 | dvcmul.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 4 | dvcmulf.df | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) | |
| 5 | fconstg | ⊢ ( 𝐴 ∈ ℂ → ( 𝑋 × { 𝐴 } ) : 𝑋 ⟶ { 𝐴 } ) | |
| 6 | 3 5 | syl | ⊢ ( 𝜑 → ( 𝑋 × { 𝐴 } ) : 𝑋 ⟶ { 𝐴 } ) |
| 7 | 3 | snssd | ⊢ ( 𝜑 → { 𝐴 } ⊆ ℂ ) |
| 8 | 6 7 | fssd | ⊢ ( 𝜑 → ( 𝑋 × { 𝐴 } ) : 𝑋 ⟶ ℂ ) |
| 9 | c0ex | ⊢ 0 ∈ V | |
| 10 | 9 | fconst | ⊢ ( 𝑋 × { 0 } ) : 𝑋 ⟶ { 0 } |
| 11 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 12 | 1 11 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 13 | fconstg | ⊢ ( 𝐴 ∈ ℂ → ( 𝑆 × { 𝐴 } ) : 𝑆 ⟶ { 𝐴 } ) | |
| 14 | 3 13 | syl | ⊢ ( 𝜑 → ( 𝑆 × { 𝐴 } ) : 𝑆 ⟶ { 𝐴 } ) |
| 15 | 14 7 | fssd | ⊢ ( 𝜑 → ( 𝑆 × { 𝐴 } ) : 𝑆 ⟶ ℂ ) |
| 16 | ssidd | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑆 ) | |
| 17 | dvbsss | ⊢ dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 | |
| 18 | 17 | a1i | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 ) |
| 19 | 4 18 | eqsstrrd | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
| 20 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 21 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) | |
| 22 | 20 21 | dvres | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ ( 𝑆 × { 𝐴 } ) : 𝑆 ⟶ ℂ ) ∧ ( 𝑆 ⊆ 𝑆 ∧ 𝑋 ⊆ 𝑆 ) ) → ( 𝑆 D ( ( 𝑆 × { 𝐴 } ) ↾ 𝑋 ) ) = ( ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ↾ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ) ) |
| 23 | 12 15 16 19 22 | syl22anc | ⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑆 × { 𝐴 } ) ↾ 𝑋 ) ) = ( ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ↾ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ) ) |
| 24 | 19 | resmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ↾ 𝑋 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
| 25 | fconstmpt | ⊢ ( 𝑆 × { 𝐴 } ) = ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) | |
| 26 | 25 | reseq1i | ⊢ ( ( 𝑆 × { 𝐴 } ) ↾ 𝑋 ) = ( ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ↾ 𝑋 ) |
| 27 | fconstmpt | ⊢ ( 𝑋 × { 𝐴 } ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) | |
| 28 | 24 26 27 | 3eqtr4g | ⊢ ( 𝜑 → ( ( 𝑆 × { 𝐴 } ) ↾ 𝑋 ) = ( 𝑋 × { 𝐴 } ) ) |
| 29 | 28 | oveq2d | ⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑆 × { 𝐴 } ) ↾ 𝑋 ) ) = ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) ) |
| 30 | 19 | resmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑆 ↦ 0 ) ↾ 𝑋 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
| 31 | fconstg | ⊢ ( 𝐴 ∈ ℂ → ( ℂ × { 𝐴 } ) : ℂ ⟶ { 𝐴 } ) | |
| 32 | 3 31 | syl | ⊢ ( 𝜑 → ( ℂ × { 𝐴 } ) : ℂ ⟶ { 𝐴 } ) |
| 33 | 32 7 | fssd | ⊢ ( 𝜑 → ( ℂ × { 𝐴 } ) : ℂ ⟶ ℂ ) |
| 34 | ssidd | ⊢ ( 𝜑 → ℂ ⊆ ℂ ) | |
| 35 | dvconst | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( ℂ × { 𝐴 } ) ) = ( ℂ × { 0 } ) ) | |
| 36 | 3 35 | syl | ⊢ ( 𝜑 → ( ℂ D ( ℂ × { 𝐴 } ) ) = ( ℂ × { 0 } ) ) |
| 37 | 36 | dmeqd | ⊢ ( 𝜑 → dom ( ℂ D ( ℂ × { 𝐴 } ) ) = dom ( ℂ × { 0 } ) ) |
| 38 | 9 | fconst | ⊢ ( ℂ × { 0 } ) : ℂ ⟶ { 0 } |
| 39 | 38 | fdmi | ⊢ dom ( ℂ × { 0 } ) = ℂ |
| 40 | 37 39 | eqtrdi | ⊢ ( 𝜑 → dom ( ℂ D ( ℂ × { 𝐴 } ) ) = ℂ ) |
| 41 | 12 40 | sseqtrrd | ⊢ ( 𝜑 → 𝑆 ⊆ dom ( ℂ D ( ℂ × { 𝐴 } ) ) ) |
| 42 | dvres3 | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ ( ℂ × { 𝐴 } ) : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D ( ℂ × { 𝐴 } ) ) ) ) → ( 𝑆 D ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) ) = ( ( ℂ D ( ℂ × { 𝐴 } ) ) ↾ 𝑆 ) ) | |
| 43 | 1 33 34 41 42 | syl22anc | ⊢ ( 𝜑 → ( 𝑆 D ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) ) = ( ( ℂ D ( ℂ × { 𝐴 } ) ) ↾ 𝑆 ) ) |
| 44 | xpssres | ⊢ ( 𝑆 ⊆ ℂ → ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) = ( 𝑆 × { 𝐴 } ) ) | |
| 45 | 12 44 | syl | ⊢ ( 𝜑 → ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) = ( 𝑆 × { 𝐴 } ) ) |
| 46 | 45 | oveq2d | ⊢ ( 𝜑 → ( 𝑆 D ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) ) = ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ) |
| 47 | 36 | reseq1d | ⊢ ( 𝜑 → ( ( ℂ D ( ℂ × { 𝐴 } ) ) ↾ 𝑆 ) = ( ( ℂ × { 0 } ) ↾ 𝑆 ) ) |
| 48 | xpssres | ⊢ ( 𝑆 ⊆ ℂ → ( ( ℂ × { 0 } ) ↾ 𝑆 ) = ( 𝑆 × { 0 } ) ) | |
| 49 | 12 48 | syl | ⊢ ( 𝜑 → ( ( ℂ × { 0 } ) ↾ 𝑆 ) = ( 𝑆 × { 0 } ) ) |
| 50 | 47 49 | eqtrd | ⊢ ( 𝜑 → ( ( ℂ D ( ℂ × { 𝐴 } ) ) ↾ 𝑆 ) = ( 𝑆 × { 0 } ) ) |
| 51 | 43 46 50 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) = ( 𝑆 × { 0 } ) ) |
| 52 | fconstmpt | ⊢ ( 𝑆 × { 0 } ) = ( 𝑥 ∈ 𝑆 ↦ 0 ) | |
| 53 | 51 52 | eqtrdi | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) = ( 𝑥 ∈ 𝑆 ↦ 0 ) ) |
| 54 | 20 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 55 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) | |
| 56 | 54 12 55 | sylancr | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 57 | topontop | ⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ) | |
| 58 | 56 57 | syl | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ) |
| 59 | toponuni | ⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) | |
| 60 | 56 59 | syl | ⊢ ( 𝜑 → 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 61 | 19 60 | sseqtrd | ⊢ ( 𝜑 → 𝑋 ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 62 | eqid | ⊢ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) | |
| 63 | 62 | ntrss2 | ⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ∧ 𝑋 ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ⊆ 𝑋 ) |
| 64 | 58 61 63 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ⊆ 𝑋 ) |
| 65 | 12 2 19 21 20 | dvbssntr | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) ⊆ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ) |
| 66 | 4 65 | eqsstrrd | ⊢ ( 𝜑 → 𝑋 ⊆ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ) |
| 67 | 64 66 | eqssd | ⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) = 𝑋 ) |
| 68 | 53 67 | reseq12d | ⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ↾ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ) = ( ( 𝑥 ∈ 𝑆 ↦ 0 ) ↾ 𝑋 ) ) |
| 69 | fconstmpt | ⊢ ( 𝑋 × { 0 } ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) | |
| 70 | 69 | a1i | ⊢ ( 𝜑 → ( 𝑋 × { 0 } ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
| 71 | 30 68 70 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ↾ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ) = ( 𝑋 × { 0 } ) ) |
| 72 | 23 29 71 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) = ( 𝑋 × { 0 } ) ) |
| 73 | 72 | feq1d | ⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) : 𝑋 ⟶ { 0 } ↔ ( 𝑋 × { 0 } ) : 𝑋 ⟶ { 0 } ) ) |
| 74 | 10 73 | mpbiri | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) : 𝑋 ⟶ { 0 } ) |
| 75 | 74 | fdmd | ⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) = 𝑋 ) |
| 76 | 1 8 2 75 4 | dvmulf | ⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑋 × { 𝐴 } ) ∘f · 𝐹 ) ) = ( ( ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) ∘f · 𝐹 ) ∘f + ( ( 𝑆 D 𝐹 ) ∘f · ( 𝑋 × { 𝐴 } ) ) ) ) |
| 77 | sseqin2 | ⊢ ( 𝑋 ⊆ 𝑆 ↔ ( 𝑆 ∩ 𝑋 ) = 𝑋 ) | |
| 78 | 19 77 | sylib | ⊢ ( 𝜑 → ( 𝑆 ∩ 𝑋 ) = 𝑋 ) |
| 79 | 78 | mpteq1d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑆 ∩ 𝑋 ) ↦ ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 80 | 14 | ffnd | ⊢ ( 𝜑 → ( 𝑆 × { 𝐴 } ) Fn 𝑆 ) |
| 81 | 2 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 82 | 1 19 | ssexd | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 83 | eqid | ⊢ ( 𝑆 ∩ 𝑋 ) = ( 𝑆 ∩ 𝑋 ) | |
| 84 | fvconst2g | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑆 × { 𝐴 } ) ‘ 𝑥 ) = 𝐴 ) | |
| 85 | 3 84 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑆 × { 𝐴 } ) ‘ 𝑥 ) = 𝐴 ) |
| 86 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 87 | 80 81 1 82 83 85 86 | offval | ⊢ ( 𝜑 → ( ( 𝑆 × { 𝐴 } ) ∘f · 𝐹 ) = ( 𝑥 ∈ ( 𝑆 ∩ 𝑋 ) ↦ ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 88 | 6 | ffnd | ⊢ ( 𝜑 → ( 𝑋 × { 𝐴 } ) Fn 𝑋 ) |
| 89 | inidm | ⊢ ( 𝑋 ∩ 𝑋 ) = 𝑋 | |
| 90 | fvconst2g | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) = 𝐴 ) | |
| 91 | 3 90 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) = 𝐴 ) |
| 92 | 88 81 82 82 89 91 86 | offval | ⊢ ( 𝜑 → ( ( 𝑋 × { 𝐴 } ) ∘f · 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 93 | 79 87 92 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝑆 × { 𝐴 } ) ∘f · 𝐹 ) = ( ( 𝑋 × { 𝐴 } ) ∘f · 𝐹 ) ) |
| 94 | 93 | oveq2d | ⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑆 × { 𝐴 } ) ∘f · 𝐹 ) ) = ( 𝑆 D ( ( 𝑋 × { 𝐴 } ) ∘f · 𝐹 ) ) ) |
| 95 | 78 | mpteq1d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑆 ∩ 𝑋 ) ↦ ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 96 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) | |
| 97 | 1 96 | syl | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 98 | 4 | feq2d | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ↔ ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) ) |
| 99 | 97 98 | mpbid | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) |
| 100 | 99 | ffnd | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) Fn 𝑋 ) |
| 101 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) = ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) | |
| 102 | 80 100 1 82 83 85 101 | offval | ⊢ ( 𝜑 → ( ( 𝑆 × { 𝐴 } ) ∘f · ( 𝑆 D 𝐹 ) ) = ( 𝑥 ∈ ( 𝑆 ∩ 𝑋 ) ↦ ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 103 | 0cnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ∈ ℂ ) | |
| 104 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · 𝐴 ) ∈ V ) | |
| 105 | 72 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) ∘f · 𝐹 ) = ( ( 𝑋 × { 0 } ) ∘f · 𝐹 ) ) |
| 106 | 0cnd | ⊢ ( 𝜑 → 0 ∈ ℂ ) | |
| 107 | mul02 | ⊢ ( 𝑥 ∈ ℂ → ( 0 · 𝑥 ) = 0 ) | |
| 108 | 107 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 0 · 𝑥 ) = 0 ) |
| 109 | 82 2 106 106 108 | caofid2 | ⊢ ( 𝜑 → ( ( 𝑋 × { 0 } ) ∘f · 𝐹 ) = ( 𝑋 × { 0 } ) ) |
| 110 | 105 109 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) ∘f · 𝐹 ) = ( 𝑋 × { 0 } ) ) |
| 111 | 110 69 | eqtrdi | ⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) ∘f · 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
| 112 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ∈ V ) | |
| 113 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
| 114 | 99 | feqmptd | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) |
| 115 | 27 | a1i | ⊢ ( 𝜑 → ( 𝑋 × { 𝐴 } ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
| 116 | 82 112 113 114 115 | offval2 | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ∘f · ( 𝑋 × { 𝐴 } ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · 𝐴 ) ) ) |
| 117 | 82 103 104 111 116 | offval2 | ⊢ ( 𝜑 → ( ( ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) ∘f · 𝐹 ) ∘f + ( ( 𝑆 D 𝐹 ) ∘f · ( 𝑋 × { 𝐴 } ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 0 + ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · 𝐴 ) ) ) ) |
| 118 | 99 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 119 | 118 113 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · 𝐴 ) ∈ ℂ ) |
| 120 | 119 | addlidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 0 + ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · 𝐴 ) ) = ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · 𝐴 ) ) |
| 121 | 118 113 | mulcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · 𝐴 ) = ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) |
| 122 | 120 121 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 0 + ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · 𝐴 ) ) = ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) |
| 123 | 122 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 0 + ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 124 | 117 123 | eqtrd | ⊢ ( 𝜑 → ( ( ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) ∘f · 𝐹 ) ∘f + ( ( 𝑆 D 𝐹 ) ∘f · ( 𝑋 × { 𝐴 } ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 125 | 95 102 124 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝑆 × { 𝐴 } ) ∘f · ( 𝑆 D 𝐹 ) ) = ( ( ( 𝑆 D ( 𝑋 × { 𝐴 } ) ) ∘f · 𝐹 ) ∘f + ( ( 𝑆 D 𝐹 ) ∘f · ( 𝑋 × { 𝐴 } ) ) ) ) |
| 126 | 76 94 125 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑆 × { 𝐴 } ) ∘f · 𝐹 ) ) = ( ( 𝑆 × { 𝐴 } ) ∘f · ( 𝑆 D 𝐹 ) ) ) |